I simply use this to attempt to reduce the symptoms of the "keto-flu" when I'm entering ketosis after blowing my carbs out. The holidays are particularly bad for falling off the keto band-wagon. I've used this three times now to transition back into ketosis and I can report that it does seem to reduce the effects of the keto flu (headache, weakness) that I'd normally experience transitioning back into a low-carbohydrate diet. I typically take it for 3 days and then stop because by that time I'm in ketosis again, but I'd imagine you could take it longer.
I am a little confused. I can see how EK’s can help up the state of ketosis, but as far is weight loss is concerned, aren’t the ketones you produce naturally created by the breaking down of your own fat? If I supplement with exogenous ketones, will that slow the natural creation of ketones? Especially if I am eating a higher amount of carbs. Would exogenous ketones speed fat loss, or slow it?
The USDA guidelines recommend less than 2400 mg of sodium per day for healthy adults, and 1500 mg or less for individuals over the age of 50 or at risk for hypertension[2]. For reference, 2300 mg of sodium is the equivalent of about one teaspoon of salt.  Even though these recommendations are promoted by the American Heart Associated and other health-related organizations, recent research has claimed that there is simply not enough evidence to support these guidelines[5]. Worldwide 24-hour urinary sodium excretion data suggest that the normal range is actually 2500-5000 mg per day, which is what most of us consume daily[6]. Additionally, people with high activity levels or chronically low blood pressure may require more sodium than the average person.

Ketone monoester and diester compounds may circumvent the problems associated with inorganic ion consumption in KS drinks. KE ingestion rapidly increased blood ketone concentrations to >5 mM in animals (Desrochers et al., 1995a,b; Clarke et al., 2012a) and the first oral, non-racemic KE for human consumption, (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, raised blood βHB concentrations to 3–5 mM in healthy adults (Clarke et al., 2012b; Shivva et al., 2016) and athletes (Cox et al., 2016; Holdsworth et al., 2017; Vandoorne et al., 2017). However, the pharmacokinetics and pharmacodynamics of this KE with confounding factors, such as prandial state or multiple KE drinks, have not been characterized.
In conclusion, drinks containing exogenous ketones, in either ester or salt form, can raise concentrations of blood βHB in humans, although elevation of l-βHB lasts longer after racemic KS consumption. Both KE and KS drinks mildly altered acid-base balance. Exogenous ketones lowered blood glucose and lipids without inhibiting endogenous insulin secretion. The KE delivered highly repeatable blood concentrations of d-βHB, although ketosis was decreased by a meal. Uptake and elimination of d-βHB were similar when several drinks were consumed in succession. The dietary KE could maintain ketosis using drinks taken regularly around a normal meal pattern, or using a continuous infusion via a nasogastric tube. Therefore, ketone drinks are a viable and practical alternative to dietary strategies to achieve ketosis.
In a subset of participants (n = 7) the effect of 3.2 mmol.kg−1 of βHB as KE and KS on blood pH and electrolytes after ketone drinks was investigated. Blood d-βHB kinetics were similar to those in the initial experiment (Figure ​(Figure3A).3A). After 60 min, blood pH declined from 7.41 to 7.31 following a KE drink (p < 0.001, Figure ​Figure3B).3B). Bicarbonate fell significantly from 23.6 ± 0.7 to 17.0 ± 0.8 mM following KE drinks (p < 0.001), but remained within the normal range (Figure 3C). Both ketone drinks significantly decreased blood potassium concentrations by 0.7 mM (both drinks p < 0.05, Figure 3D) and increased sodium and chloride concentrations (Sodium: both drinks p < 0.05, Chloride: KE = p < 0.05, KS = p < 0.005, Figures 3E,F).
Also known as the carb flu, the keto flu is commonly experienced by people who are transitioning to a Ketogenic diet. “Keto flu” is not actually flu but mimics the experience of flu with very similar symptoms. It can happen when someone who has become accustomed to relying primarily on carbohydrates as fuel removes them from their diet. Whilst this is a necessary step towards adjusting from being a sugar-burner to a fat-burner, the sudden change can trigger some unpleasant symptoms, much like withdrawing from an addictive substance. Keto flu symptoms can include drowsiness, nausea, dizziness, achy muscles, mental fogginess and an irritable mood. The good news though, is that most of these experiences relate to dehydration and electrolyte depletion, and so are easily prevented or managed. Simply adding a ¼ - ½ teaspoon of a high quality sea salt or sodium/potassium powder to a glass of water works wonders; however you may still require a separate magnesium supplement; particularly if you are prone to muscle cramps or restless legs. Another popular way to manage your electrolytes is via a good quality bone broth powder. Finally, since BHB’s are normally delivered via a mineral salt base*, keto flu symptoms are easily prevented or reduced by using an exogenous ketone supplement powder.
While we know that both MCT Oil Powders and BHB salts are proven supplements to increases ketosis, the winner of a top 5 exogenous ketones list I think should be a true direct form of exogenous ketones – one of the BHB salts. Perfect Keto’s BASE takes the win here. The edge ranking factor is its flavor. With stevia-based flavors such as chocolate sea salt, and the fact that it uses zero additives and actually tastes good, this BHB salt is going to have to take the W. They’re the only 100% coconut MCTs that don’t utilize the goMCT™ form.. this is neither a pro or con. And while it doesn’t have the best bang for your buck compared to the other BHB salts on this list, it’s the most proven as far as happy customer track record and consistent high-quality keto supplements.
In the second of these posts I discuss the Delta G implications of the body using ketones (specifically, beta-hydroxybutyrate, or BHB, and acetoacetate, or AcAc) for ATP generation, instead of glucose and free fatty acid (FFA). At the time I wrote that post I was particularly (read: personally) interested in the Delta G arbitrage. Stated simply, per unit of carbon, utilization of BHB offers more ATP for the same amount of oxygen consumption (as corollary, generation of the same amount of ATP requires less oxygen consumption, when compared to glucose or FFA).

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×