Many of us avoid foods like processed meats and cheeses or salted nuts because of their high sodium content. However, processed carbohydrate sources can have equal or higher amounts of sodium per serving. An ounce of salted pretzels[3] has over four times as much sodium as an ounce of salted peanuts[4]. Just because we can’t taste the sodium doesn’t mean it isn’t in there. Flavors from other ingredients like sugar and spices can make it difficult to identify salt as a dominant flavor.
Another source of the D-BOHB isomer is an evolutionarily ancient energy source for micro-organisms. Poly-BOHB is a long chain of D-BOHB molecules strung end-to-end. It functions in many single-cell organisms as a concentrated energy source similar to glycogen in mammals, but whereas glycogen breakdown releases individual glucose molecules, poly-BOHB hydrolysis releases single D-BOHB molecules.

Recently, two published studies investigated the effects of ketone salts in athletes (total n = 22).8,9 Performance over a four-minute cycling time-trial and a 150 kJ ( ~11 mins) cycling time trial were compared between ketone salts vs. carbohydrate. In the four-minute trial there was no change in performance, and in the 150 kJ test, performance decreased by 7%. Blood BHB levels peaked at 0.6 and 0.8 mM in these studies.

Exogenous ketones drinks are growing in popularity as a method to elevate blood ketone concentrations and mimic a ketogenic diet without the need for dietary changes (Ari et al., 2016; Cox et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017; Evans et al., 2017). The present study describes the pharmacokinetic and pharmacodynamics properties of ketone ester and salt drinks in humans at rest, and characterizes the effects of a prior meal, which is pertinent to use as a dietary supplement. The main findings were that KE drinks elevated blood d-βHB > 50% higher than KS drinks, the latter significantly increasing blood l-βHB, which was metabolized more slowly by the body. Both drinks had similar effects on FFA, TG, glucose and electrolyte concentrations, although with disparate effects on pH. A prior meal decreased total blood d-βHB appearance after a KE drink. Finally, either three KE drinks or nasogastric feeding effectively maintained nutritional ketosis over 1 mM for 9 h.
Plecko B., Stoeckler-Ipsiroglu S., Schober E., Harrer G., Mlynarik V., Gruber S., et al. . (2002). Oral beta-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of beta-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr. Res. 52, 301–306. 10.1203/01.PDR.0000019439.27135.2B [PubMed] [CrossRef]

Hi Acadia, just want to clear up a few things you noted in your post: The manufacture of BHB salts involves ionic bonding of an anion (beta-hydroxybutyrate) with a cation (Na+, K+, Ca+, Mg+). At least one of the exogenous ketone products you listed does in fact contain potassium ions. People taking potassium-sparing drugs need to know this and that raises concerns about leaving it off your chart. Some people are genuinely sodium sensitive even to small amounts of salt added to otherwise healthy foods. This can hold true even for those following ketogenic diets. The term you’re looking for… Read more »

This was a big surprise. We were at the very least expecting that drinking a ketone supplement would cause blood ketones to rise, but an average increase of 0.33 mmol/L is very small. The supplement associated with the highest average increase in blood ketones was Prüvit’s Keto-OS Max, but it was only an increase of 0.6 mmol/L. Brianna Stubbs, the ketone researcher I consulted with, agrees that an increase of below 2.0-3.0 mmol/L is unlikely to be of much use.
Whereas ketone esters are 100% D- form, most ketone salts are a 50/50 mix of left and right-handed beta hydroxybutyrate, which is known as a racemic mixture. These beta hydroxybutyrate molecules are linked to a mineral, such sodium (Na), calcium (Ca), potassium (K), or magnesium (Mg). This kind of ketone supplement gets broken down to left and right-handed version of beta hydroxybutyrate along with the mineral.
Blood d-βHB concentrations rapidly increased to a maximum of 2.8 ± 0.2 mM following the KE drink and to 1.0 ± 0.1 mM following the KS drink (Figure ​(Figure1A).1A). After the peak was reached, blood d-βHB disappearance was non-linear, and followed first order elimination kinetics as reported previously (Clarke et al., 2012b; Shivva et al., 2016). d-βHB Tmax was ~2-fold longer following KS drinks vs. KE drinks (p < 0.01, Figure ​Figure1B),1B), and KS d-βHB AUC was ~30–60% lower than the KE drink (p < 0.01, Figure ​Figure1C1C).
BHB easily crosses the blood-brain barrier resulting in easily accessible energy to the brain and muscle tissues, becoming a source of energy after entering the mitochondria, being converted to Acetyl-CoA, and then ATP through the Krebs cycle (the same process that glucose goes through to become ATP). This ultimately results in many direct benefits, including:

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright ©