From my personal experience, there are plenty of ketogenic supplements that certainly do work, but you do have to be careful of the "phonies." You can find highly recommended ketones products that are endorsed by celebrity life coaches such as Timothy Ferris and Joe Rogan; then you also have those infomercial products that are probably as effective as eating Tic Tacs, which is why it is really important to do your research before experimenting. Once you are finished scouring this website full of its information, you should be well-equipped to make a calculated decision on whether this whole thing is for you and that means our mission is complete. 
Many of us have heard the saying, “Don’t blame the butter for what the bread did.”  Similarly, don’t blame the sodium for what the fries did.  Sodium has been shown to help maintain fluid balance, normal muscle and nerve function, and blood pressure and volume[1]. The movement of sodium ions and other electrolytes across cell membranes helps to facilitate muscle contraction and nerve impulses. Electrolytes also help to maintain fluid balance across intracellular and extracellular spaces and blood volume.
It might sound absolutely crazy to go that long without food. Especially when you consider traditional diets that recommend eating 3-5 small meals each day, starting with breakfast – the “most important” meal of the day. But if you think back to hunter gatherer times, human beings didn’t always have food accessible to us. Farming and agriculture hadn’t existed so our first meal each day would vary quite vastly. If you think about the word itself, ‘breakfast’ means to break-fast. We didn’t have a set time where we would consume our first meal – it was dependent on accessibility. So if you’re wondering how you’re going to survive without going for food for 16 hours, the answer is straight forward – you can! Let’s simplify this and break down what this may potentially look like.
The ketone esters are, hands-down, the worst tasting compounds I have ever put in my body. The world’s worst scotch tastes like spring water compared to these things. The first time I tried 50 mL of BHB monoester, I failed to mix it with anything (Dom warned me, but I was too eager to try them to actually read his instructions). Strategic error. It tasted as I imagine jet fuel would taste. I thought I was going to go blind. I didn’t stop gagging for 10 minutes. (I did this before an early morning bike ride, and I was gagging so loudly in the kitchen that I woke up my wife, who was still sleeping in our bedroom.) The taste of the AcAc di-ester is at least masked by the fact that Dom was able to put it into capsules. But they are still categorically horrible. The salts are definitely better, but despite experimenting with them for months, I was unable to consistently ingest them without experiencing GI side-effects; often I was fine, but enough times I was not, which left me concluding that I still needed to work out the kinks. From my discussions with others using the BHB salts, it seems I have a particularly sensitive GI system.

The product does not work. I have taken one scoop daily and for last two days two scoops (once in the morning and once in the night). I also do intermittent fast i.e. no food from 8 pm - next day 2 pm other than this powder in the morning. My food is 1500 calories with 60% fat, 30% protein and 5% carbs. I used to achieve ketosis naturally prior to using the powder. But now, there is no ketosis. This product does not work. I am wondering how on earth did they pick up so many reviews, unless it is faked marketing.

Blood d-βHB, pH, bicarbonate (HCO3-) and electrolytes measured in arterialized blood samples from resting subjects (n = 7) following a ketone ester or salt drink containing 3.2 mmol.kg−1 of βHB. Shaded areas represent the normal range. Values are means ± SEM. (A) Venous blood d-βHB. (B) Arterialized blood pH. (C) Blood bicarbonate. (D) Blood potassium. (E) Blood sodium. (F) Blood chloride. †p < 0.05 difference between KE and KS, *p < 0.05 difference from baseline value.
Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. – Glucose is the brain’s principal energy substrate. In Alzheimer’s disease (AD), there appears to be a pathological decrease in the brain’s ability to use glucose. Neurobiological evidence suggests that ketone bodies are an effective alternative energy substrate for the brain. Elevation of plasma ketone body levels through an oral dose of medium chain triglycerides (MCTs) may improve cognitive functioning in older adults with memory disorders. On separate days, 20 subjects with AD or mild cognitive impairment consumed a drink containing emulsified MCTs or placebo. Significant increases in levels of the ketone body beta-hydroxybutyrate (beta-OHB) were observed 90 min after treatment (P=0.007) when cognitive tests were administered. beta-OHB elevations were moderated by apolipoprotein E (APOE) genotype (P=0.036). For 4+ subjects, beta-OHB levels continued to rise between the 90 and 120 min blood draws in the treatment condition, while the beta-OHB levels of 4- subjects held constant (P<0.009). On cognitive testing, MCT treatment facilitated performance on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) for 4- subjects, but not for 4+ subjects (P=0.04). Higher ketone values were associated with greater improvement in paragraph recall with MCT treatment relative to placebo across all subjects (P=0.02). Additional research is warranted to determine the therapeutic benefits of MCTs for patients with AD and how APOE-4 status may mediate beta-OHB efficacy. (http://www.ncbi.nlm.nih.gov/pubmed/15123336)

Great question. So if you are already in nutritional ketosis from your diet, exogenous ketones would still help raise ketone (energy) levels when you want that (maybe for focus at work or energy at the gym. They also help get you back into ketosis after cheat meals and skip the “keto flu” which is the period when your body is using up stored glycogen.

You must realise that our bodies are lazy and switching to a new energy source means hard work, that means that your body will not do this easily and you basically have to force it. One way to speed up this process is to put your body into fight or flight mode. My preferred  controlled exercise to do this is to have a high intensity workout followed immediately by a  cold shower.  I am describing it in the article to go slowly, but in this case it will actually be beneficial if you can force your self to go straight into a cold shower and try to stay there at least 2 minutes. One of the benefits of this that your body will produce the hormone noradrenaline. Obviously this is something for people in perfect health. Please advice your doctor before you want to take cold showers.
Over five visits, participants (n = 16) consumed either 4.4 mmol.kg−1 of βHB (2.2 mmol.kg−1 or 395 mg/kg of KE; 1 mole of KE delivered 2 moles of d-βHB equivalents): twice whilst fasted, and twice following a standardized meal, or an isocaloric dextrose drink without a meal. To improve palatability, drinks were diluted to 500 ml with a commercially available, citrus flavored drink containing 65 kCal (5 g of carbohydrate) (Glaceau, UK). The dextrose drink was taste-matched using a bitterness additive (Symrise, Holzminden, Germany). The standard meal consisted of porridge oats (54 g), semi-skimmed milk (360 ml) and banana (120 g), giving 600 kCal per person, with a macronutrient ratio of Carbohydrate: Protein: Fat of 2:1:1.
Blood, urine, plasma, and breath ketone concentrations following mole-matched ketone ester or isocaloric dextrose drinks in fed and fasted subjects (n = 16) at rest. Data from both of the two study visits in each condition (fed and fasted) completed by an individual are included in the analysis. Values are means ± SEM. (A) Blood d-βHB. (B) AUC of blood d-βHB. (C) Urine d-βHB excretion. (D) Plasma acetoacetate (AcAc). (E) Measured breath acetone (ppm = parts per million). (F,G) Mean d-βHB Cmax and difference between βHB Cmax over two visits when subjects separately consumed two ketone ester drinks in both the fed (F) and fasted (G) state. X axis = mean d-βHB Cmax of the 2 visits (mM), Y axis = difference between d-βHB Cmax in each visit. 95% confidence limits are shown as dotted lines. Significance denoted by: *p < 0.05 fed vs. fasted.
Effects of ketone supplementation on blood βHB. a, b Blood βHB levels at times 0, 0.5, 1, 4, 8, and 12 h post intragastric gavage for ketone supplements tested. a BMS + MCT and MCT supplementation rapidly elevated and sustained significant βHB elevation compared to controls for the duration of the 4-week dose escalation study. BMS did not significantly elevate βHB at any time point tested compared to controls. b BD and KE supplements, maintained at 5 g/kg, significantly elevated βHB levels for the duration of the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
The best time to start a one day fast is in the evening (neither morning nor the night) – preferably, around 6 pm. It won’t make you lose your vital energy during the daytime workouts, nor does it let you sleep with undigested foodstuff in your stomach. Taking late meals and sleeping with undigested food doesn’t allow your body to rest. So the natural healing mechanism of your body fails during the sleep time as the entire resources are busy digesting your food.

Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. – Glucose is the brain’s principal energy substrate. In Alzheimer’s disease (AD), there appears to be a pathological decrease in the brain’s ability to use glucose. Neurobiological evidence suggests that ketone bodies are an effective alternative energy substrate for the brain. Elevation of plasma ketone body levels through an oral dose of medium chain triglycerides (MCTs) may improve cognitive functioning in older adults with memory disorders. On separate days, 20 subjects with AD or mild cognitive impairment consumed a drink containing emulsified MCTs or placebo. Significant increases in levels of the ketone body beta-hydroxybutyrate (beta-OHB) were observed 90 min after treatment (P=0.007) when cognitive tests were administered. beta-OHB elevations were moderated by apolipoprotein E (APOE) genotype (P=0.036). For 4+ subjects, beta-OHB levels continued to rise between the 90 and 120 min blood draws in the treatment condition, while the beta-OHB levels of 4- subjects held constant (P<0.009). On cognitive testing, MCT treatment facilitated performance on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) for 4- subjects, but not for 4+ subjects (P=0.04). Higher ketone values were associated with greater improvement in paragraph recall with MCT treatment relative to placebo across all subjects (P=0.02). Additional research is warranted to determine the therapeutic benefits of MCTs for patients with AD and how APOE-4 status may mediate beta-OHB efficacy. (http://www.ncbi.nlm.nih.gov/pubmed/15123336)

While exogenous ketones (EK) are a newer supplement, having entered the market for consumers in just the past few years, scientists have been synthesizing ketone bodies in a lab since the 1960’s. They were useful for scientists studying their use for specific disease conditions, most notably childhood seizure disorders, though they were prohibitively expensive for consumers (1, 2).
Effects of ketone supplementation on body weight: Rats administered ketone supplements gained less weight over the 4-week period; however, did not lose weight and maintained healthy range for age. KE supplemented rats gained significantly less weight during the entire 4-week study compared to controls. BMS + MCT, BMS, and BD supplemented rats gained significantly less weight than controls over weeks 2–4.MCT supplemented rats gained significantly less weight than controls over weeks 3–4, Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Animal research findings report that BHB supplementation also enhances oxygen utilization, especially in the central nervous system (CNS).[11] While molecular oxygen is a crucial molecule for health and longevity, too much of it can be potentially toxic and speed the effects of aging in tissues throughout the body.Therefore, using a BHB supplement can effectively mitigate the toxic buildup of molecular oxygen, particularly in the CNS/brain.
Second, there are inherent metabolic differences between boosting ketones via diet and boosting ketones via supplements. On a ketogenic diet, ketones go up because you’re converting body and dietary fat into ketone bodies. A rise in endogenous ketones means you’re burning fat and building the requisite machinery to metabolize the new energy source. On exogenous ketones, ketones go up because you ate some ketones; conversion of body and dietary fat into ketone bodies goes down if anything.
Getting into a state of ketosis normally involves eating a ketogenic diet consisting of around 80 percent fat, 15 percent protein, and 5 percent carbs. Over time, the body transitions from burning carbs for fuel to burning ketones—an alternative fuel source that the liver makes by breaking down fat, explains keto diet expert Amy Davis, RD, LDN. Since advocates say that ketosis can help you lose weight fast, think more clearly, and feel more energized, it’s tempting to try.
This is probably one of the most understood notions of a true ketogenic diet (and the difference between a keto diet and a low carb diet). An optimal ketogenic diet will be low in carbohydrates AND protein. Many people who have experimented with low carb dieting simple reduce carbs and increase protein. A big reason behind this is due to the misconception that ‘’excess fat is bad – which is untrue, more on this HERE). However, excess protein can be converted to glucose (blood sugar) through a process called gluconeogenesis.
Blood d-βHB concentrations rapidly increased to a maximum of 2.8 ± 0.2 mM following the KE drink and to 1.0 ± 0.1 mM following the KS drink (Figure ​(Figure1A).1A). After the peak was reached, blood d-βHB disappearance was non-linear, and followed first order elimination kinetics as reported previously (Clarke et al., 2012b; Shivva et al., 2016). d-βHB Tmax was ~2-fold longer following KS drinks vs. KE drinks (p < 0.01, Figure ​Figure1B),1B), and KS d-βHB AUC was ~30–60% lower than the KE drink (p < 0.01, Figure ​Figure1C1C).
Blood d-βHB, pH, bicarbonate (HCO3-) and electrolytes measured in arterialized blood samples from resting subjects (n = 7) following a ketone ester or salt drink containing 3.2 mmol.kg−1 of βHB. Shaded areas represent the normal range. Values are means ± SEM. (A) Venous blood d-βHB. (B) Arterialized blood pH. (C) Blood bicarbonate. (D) Blood potassium. (E) Blood sodium. (F) Blood chloride. †p < 0.05 difference between KE and KS, *p < 0.05 difference from baseline value.

It’s not clear that the Weir coefficients used to estimate EE are relevant for someone in ketosis, let alone someone ingesting exogenous BHB. (The Weir formula states that EE is approximated by 3.94 * VO2 + 1.11 * VCO2, where VO2 and VCO2 are measured in L/min; 3.94 and 1.11 are the Weir coefficients, and they are derived by tabulating the stoichiometry of lipid synthesis and oxidation of fat and glucose and calculating the amount of oxygen consumed and carbon dioxide generated.) While this doesn’t impact the main observation—less oxygen was consumed with higher ketones—it does impact the estimation of EE and substrate use.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×