There are many top-rated exogenous ketone supplements, which is a great resource to help get your body to adapt faster and produce at a high-performance level, but you need to be careful how they can effect you and your energy levels and your general mood each day, so it’s important to check with your local physician and be safe about it. Remember that when you switch over to this diet, you must maintain high sodium levels during the process. It is recommended to add more 'keto salt' to your daily intake, starting off gradually and increasing it to as much as 500g a day. You need to add salt and electrolytes to your routine, because a person can lose levels through their urine, which causes your body to become more dehydrated and can leave you feeling a little sick and weak if you don't have the balance properly set up. Most exogenous ketone supplements we found have quite a bit of sodium in their ingredients, which helps you reach the level of salt intake you need each day. It is important to understand how this whole process works before even thinking about tackling it yourself. This is why you should consult with a professional to seek out advice and address any concerns that you may have before getting started.
Exogenously delivered ketone supplements significantly altered rat weight gain for the duration of the study (Fig. 6). However, rats did not lose weight and maintained a healthy range for their age. Rats have been shown to effectively balance their caloric intake to prevent weight loss/gain [97–99]. Due to the caloric density of the exogenous ketone supplements (Table 1) it is possible for the rats to eat less of the standard rodent chow and therefore less carbohydrates while maintaining their caloric intake. Food intake was not measured for this study. However, if there was a significant carbohydrate restriction there would be a signifcant change in basal blood ketone and blood glucose levels. As the hallmark to the KD, carbohydrate restriction increases blood ketone levels and reduces blood glucose levels. Neither an increase in basal blood ketone levels nor a decrease in basal blood glucose levels was observed in this study (Fig. 7). Additionally, if there were an overall blood glucose decrease due to a change in food intake, this would not explain the rapid reduction (within 30 min) in blood glucose correlated with an elevation of blood ketone levels after an intragastric bolus of ketone supplement (Figs. 2, ​,33 and ​and44).
The current recommendation for magnesium is 310-320 mg for adult women and 400-420 mg for adult men. Magnesium deficiencies are common; 2005-2006 data indicates that the majority of Americans’ dietary magnesium intake was less than the Estimated Average Requirement (EAR) for the respective age groups[25]. The EAR for a nutrient is about 20% LESS than the RDA. Current data on magnesium intake and deficiency in the US is not readily available, as magnesium testing is not part of routine electrolyte testing in hospitals and clinics[26].

A meal high in carbohydrate and calories significantly decreased peak d-βHB by ~ 1 mM (Figure ​(Figure4A)4A) and reduced the d-βHB AUC by 27% (p < 0.001, Figure ​Figure4B).4B). There were no significant changes in d-βHB Tmax (fed = 73 ± 6 min vs. fasted 66 ± 4 min). Despite the differences in d-βHB kinetics after the meal, there were no effects of food on urinary ketone excretion (Figure ​(Figure4C),4C), plasma AcAc (Figure ​(Figure4D)4D) or breath acetone (Figure ​(Figure4E)4E) following KE ingestion. Plasma AcAc kinetics followed a similar time course to d-βHB, with the ratio of blood d-βHB: AcAc being 6:1 when KE drinks were consumed whilst fasted, and 4:1 following the meal. As observed in Study 1, breath acetone concentrations rose more slowly than blood ketone concentrations, reaching a plateau at 150 min and remaining elevated for at least 4 h (Figure ​(Figure4E4E).


I eat one meal a day during a one-hour window and fast 23 or more hours every day. I want to use your ketones to get back into ketosis faster after that meal. Will that work? I am confused, because say at the end of my hour eating window I drink your ketones, sure there are lots of ketones suddenly in my body but I also have a big meal in my stomach. My body has to digest and use that food energy, so how do exogenous ketones help me in that case?
Exercise or performing an extensive workout during the day is a perfect way to burn all those glycogen reserves in your body. Performing a HIIT or High Intensity Interval Training is a perfect type of exercise to do this. So, the next morning when you are awake, get set on an intense exercise session (remember, in the morning, not the afternoon). This will keep the cortisol level lowered during the evening when you wish to have some rest.

This research is a good reminder to discuss with your doctor before taking any supplements. Given the widespread use of calcium supplements, more research is required before any final conclusions can be drawn. Several ketone companies have tried to avoid the large sodium loads but instead relied on a bump in the calcium content from the BHB ketone salts, seemingly without consideration for the aforementioned results. Calcium BHB will likely absorb slower compared to sodium BHB due to digestion and absorption kinetics.  For those looking to optimize brain uptake of ketones, this probably isn’t the best strategy (as uptake is directly proportional to the levels in the blood).   Be cautious of supplements running from the sodium and chasing the calcium BHB instead, and make sure you factor that into your overall daily needs.
That’s exactly what ketones do: inhibit lipolysis, the breakdown of body fat into triglycerides and free fatty acids for burning. In normal conditions where ketones are produced endogenously, this is expected and beneficial. If homemade ketones increased lipolysis, you’d end up with ketoacidosis. You’d make ketones which released more body fat which got turned into more ketones which released more body fat which became more ketones. And on and on. It simply wouldn’t stop.
You may find a tiny amount here and there is ok (i.e., 2g of sugar with a meal full of fat may be ok).  But if you are starting out I would recommend cutting all sugar from your diet, and most importantly avoiding any sugar consumption on an empty stomach. For best results track your ketone levels before and after meals to see the impact the food has on your ketone levels.
Ketones are naturally slightly acidic, so the combination of BHB with sodium acts as a bit of a buffer to this acidity. Ketones will also naturally act as a diuretic, so you lose salt, potassium calcium and magnesium, and it is generally encouraged to increase sodium intake with ketones. The addition of sodium to the product will replenish this salt loss.
Ketone Esters: Synthetically-made compounds that link an alcohol to a ketone body, which is metabolised in the liver to a ketone. Ketone esters are used primarily in research for testing their efficacy in elevating ketone body levels (below is a generic structure of a BHB ester). Yet, the first commercial Ketone ester drink will be available in 2018 by HVMN. Research esters are reportedly very unpleasant tasting which HVMN hopes to change.
The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
Look around your grocery store, and you’ll soon start to see “Fortified with Calcium” on a variety of different labels, along with calcium supplements everywhere you look. Calcium is essential for cardiovascular health, but several studies have found too much calcium to be associated with cardiovascular events and even death.  One study found that consumption of 1000+ mg of supplemental calcium per day was associated with an increased risk of death from cardiovascular disease in men but not women[13]. Dietary calcium intake (i.e., calcium from incorporated foods such as milk, etc.), on the other hand, was not associated with death from cardiovascular disease in men or women. Additionally, a different study found 1000 mg of supplemental calcium to be associated with an increase in rates of cardiovascular events in women[14].

Considering both the broad therapeutic potential and limitations of the KD, an oral exogenous ketone supplement capable of inducing sustained therapeutic ketosis without the need for dietary restriction would serve as a practical alternative. Several natural and synthetic ketone supplements capable of inducing nutritional ketosis have been identified. Desrochers et al. elevated ketone bodies in the blood of pigs (>0.5 mM) using exogenous ketone supplements: (R, S)-1,3 butanediol and (R, S)-1,3 butanediol-acetoacetate monoesters and diester [48]. In 2012, Clarke et al. demonstrated the safety and efficacy of chronic oral administration of a ketone monoester of R-βHB in rats and humans [49, 50]. Subjects maintained elevated blood ketones without dietary restriction and experienced little to no adverse side effects, demonstrating the potential to circumvent the restrictive diet typically needed to achieve therapeutic ketosis. We hypothesized that exogenous ketone supplements could produce sustained hyperketonemia (>0.5 mM) without dietary restriction and without negatively influencing metabolic biomarkers, such as blood glucose, total cholesterol, HDL, LDL, and triglycerides. Thus, we measured these biomarkers during a 28-day administration of the following ketone supplements in rats: naturally-derived ketogenic supplements included medium chain triglyceride oil (MCT), sodium/potassium -βHB mineral salt (BMS), and sodium/potassium -βHB mineral salt + medium chain triglyceride oil 1:1 mixture (BMS + MCT) and synthetically produced ketogenic supplements included 1, 3-butanediol (BD), 1, 3-butanediol acetoacetate diester/ ketone ester (KE).


More tolerable than MCT oil: MCT oil has been known to cause gastrointestinal distress in users, especially when taken in higher amounts. Exogenous ketones in the form of ketone salts, in comparison, are well-tolerated. Thus they enable one to avoid adverse GI events while providing the body with similar types of benefits. Figure 2 shows Ketone esters can be effective at reducing appetite. A combination of MCT oil and exogenous ketones may aid weight loss and allow a lower loading of ketone supplements, without the GI distress seen with MCT oil.
Let me introduce myself. My name is Mark Sisson. I’m 63 years young. I live and work in Malibu, California. In a past life I was a professional marathoner and triathlete. Now my life goal is to help 100 million people get healthy. I started this blog in 2006 to empower people to take full responsibility for their own health and enjoyment of life by investigating, discussing, and critically rethinking everything we’ve assumed to be true about health and wellness...
An alternative to the ketogenic diet is consumption of drinks containing exogenous dietary ketones, such as ketone esters (KE) and ketone salts (KS). The metabolic effects of KS ingestion have been reported in rats (Ari et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017), in three extremely ill pediatric patients (Plecko et al., 2002; Van Hove et al., 2003; Valayannopoulos et al., 2011) and in cyclists (O'Malley et al., 2017; Rodger et al., 2017). However, the concentrations of blood βHB reached were low (<1 mM) and a high amount of salt, consumed as sodium, potassium and/or calcium βHB, was required to achieve ketosis. Furthermore, dietary KS are often racemic mixtures of the two optical isoforms of βHB, d-βHB, and l-βHB, despite the metabolism of l-βHB being poorly understood (Webber and Edmond, 1977; Scofield et al., 1982; Lincoln et al., 1987; Desrochers et al., 1992). The pharmacokinetics and pharmacodynamics of KS ingestion in healthy humans at rest have not been reported.

How BHB turns into energy is a fairly simple process. As we’ve mentioned, beta hydroxybutryate eventually leads to energy production after you consume it or after your body breaks stored body fat down. It does this by going into the cell, entering the mitochondria (energy factories) at which stage it cleaves the carboxyl acid group and becomes acetoacetate (another “ketone body”). Acetoacetate turns into acetoacetyl-CoA, which then is cleaved to acetone (another “ketone body”) and acetyl-CoA. Acetyl-CoA is the whole reason we want BHB in the first place. This jumps into what is called the Kreb’s cycle (don’t you remember any of your biochemistry classes?) and is churned into ATP — the energy currency of your cells!


If you have already mastered the Very Low Carbohydrate (VLC) or ketogenic way of eating, and/or are eating at a caloric deficit, exercising or fasting you are naturally creating the optimal conditions for your body to produce ketones and put your body into nutritional ketosis. By strict adherence to a well-formulated ketogenic diet (complete with higher levels of mineral salts) you should be able to produce all the ketones you need naturally (endogenously). If you are new or inexperienced in ketogenic eating however; or if you or a family member struggles to adhere to a ketogenic diet, then supplementation with exogenous ketones may be very beneficial. Not only will ketone supplements help to mitigate hunger and carb cravings, but they will also help you stave off carb flu symptoms (see below), giving you the best possible chance of long-term success.
When your body is done using up a certain substrate to create energy (acetyl-CoA) after eating carbohydrates, it will start to find creative ways to get the job done. This is something that you want to happen. This is the switch to ketosis. If you didn’t do this, you’d be dead after fasting for a very short period of time. Under normal circumstances, the liver will start making beta-hydroxybutyrate from long chain and medium chain fatty acids that are liberated from your fat tissue. You are turning fat into fuel. Good work. This is why people can fast for months at a time and still function like normal humans.
If you stop eating carbs, your body first uses up glucose reserves stored in the liver and muscles. After it burns all that's left of glucose, it has no other options but to start burning fat. It can burn either your body's fat stores or the fat you eat. However, not all cells in your body can use fat to make energy and this is where ketones come into play.
For whatever reason, many patients won’t attempt a ketogenic diet—even if the evidence is clear that it could help. Doctors are often hesitant to recommend dramatic dietary shifts—even if they believe in their efficacy—to patients who are already dealing with difficult health issues. If you’ve got a picky kid with epilepsy, a pickier adult with Alzheimer’s, or a cancer patient who refuses to give up the familiar-yet-non-ketogenic foods that give him some small manner of comfort in this trying ordeal, exogenous ketones could make a big difference.
Plenty of supplements make you a fractionally better sportsman and these are no different. The synthetic exogenous ketones helped Olympic-caliber cyclists cover an average of 411 additional meters during a 30-minute time-trial, which resulted in a two percent increase in overall speed, found a paper in Cell Metabolism. That can be the difference between feeling the glorious tug of the winner’s ribbon across your chest or rolling in with the stragglers.
KE consumption decreased FFA from 0.6 to 0.2 mM, TG from 1.0 to 0.8 mM, and glucose from 5.5 to 4.7 mM by the end of the study (4 h). The effect was not altered by a meal (Figures 5A–C). Dextrose drinks also lowered FFA from 0.6 to 0.2 mM and TG from 1.0 to 0.7 mM (Figures 5A, B). This was likely mediated by the transient increase in glucose, which rose from 4.6 to 6.5 mM following the dextrose drink (Figure ​(Figure5C).5C). The anti-lypoytic effect of dextrose drinks was shorter than that of KE drinks as d-βHB concentrations were elevated for longer after KE drinks than glucose after dextrose drinks. Insulin increased to ~ 35 mU.ml−1 after both the meal and the dextrose drink, but also increased to 13 ± 2 mU.ml−1 when KE was consumed whilst fasted owing to the 15 g of glucose in the flavored drink used as a diluent (Figure ​(Figure5D5D).
Recent studies suggest that many of the benefits of the KD are due to the effects of ketone body metabolism. Interestingly, in studies on T2D patients, improved glycemic control, improved lipid markers, and retraction of insulin and other medications occurred before weight loss became significant. Both βHB and AcAc have been shown to decrease mitochondrial reactive oxygen species (ROS) production [36–39]. Veech et al. have summarized the potential therapeutic uses for ketone bodies [28, 40]. They have demonstrated that exogenous ketones favorably alter mitochondrial bioenergetics to reduce the mitochondrial NAD couple, oxidize the co-enzyme Q, and increase the ΔG’ (free enthalpy) of ATP hydrolysis [41]. Ketone bodies have been shown to increase the hydraulic efficiency of the heart by 28 %, simultaneously decreasing oxygen consumption while increasing ATP production [42]. Thus, elevated ketone bodies increase metabolic efficiency and as a consequence, reduce superoxide production and increase reduced glutathione [28]. Sullivan et al. demonstrated that mice fed a KD for 10–12 days showed increased hippocampal uncoupling proteins, indicative of decreased mitochondrial-produced ROS [43]. Bough et al. showed an increase of mitochondrial biogenesis in rats maintained on a KD for 4–6 weeks [44, 45]. Recently, Shimazu et al. reported that βHB is an exogenous and specific inhibitor of class I histone deacetylases (HDACs), which confers protection against oxidative stress [38]. Ketone bodies have also been shown to suppress inflammation by decreasing the inflammatory markers TNF-a, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46, 47]. Therefore, it is thought that ketone bodies themselves confer many of the benefits associated with the KD.
Blood, breath, and urine ketone kinetics following mole-matched ketone ester (KE) and ketone salt (KS) drinks, at two amounts, in 15 subjects at rest. Values are means ± SEM. (A) Blood d-βHB. (B) Tmax of blood d-βHB. (C) AUC of blood d-βHB. (D) Isotopic abundance (%) of d- and l-chiral centers in pure liquid KE and KS. (E) Blood d-βHB and l-βHB concentrations in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (F) d-βHB and l-βHB concentrations in urine samples from subjects (n = 10) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (G) Blood d- and l-βHB after 4, 8, and 24 h in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (H) Breath acetone over 24 h in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KE and KS drinks (ppm = parts per million). (I) Urine d-βHB excreted over 4 h after KE and KS drinks (n = 15). (J) Urine pH 4 h after drink, dotted line indicates baseline. †p < 0.05 KE vs. equivalent amount of KS, *p < 0.05 difference between 1.6 vs. 3.2 mmol.kg−1 of βHB, §p < 0.05 difference between amounts of d- and l-βHB, p < 0.05 difference between baseline and post-drink level.
Many of us avoid foods like processed meats and cheeses or salted nuts because of their high sodium content. However, processed carbohydrate sources can have equal or higher amounts of sodium per serving. An ounce of salted pretzels[3] has over four times as much sodium as an ounce of salted peanuts[4]. Just because we can’t taste the sodium doesn’t mean it isn’t in there. Flavors from other ingredients like sugar and spices can make it difficult to identify salt as a dominant flavor.
One monk, for example, set out to do a 40 day fast with medical supervision while maintaining his daily activities in the monastery. After 36 days, the medical professionals had to step in due to “profound weakness” and low blood pressure when standing. Although the monk fasted for 15 days longer than Ghandi, the medical professionals were able to stop the fast in time so that he could recover.
As repeated KE consumption would be required to maintain nutritional ketosis, we investigated the kinetics of drinks in series and of continuous intra-gastric infusion. During starvation, the accumulation of ketones (>4 mM) reportedly inhibited ketone clearance from the blood, however the underlying mechanism is unknown (Hall et al., 1984; Wastney et al., 1984; Balasse and Fery, 1989). In Study 3, βHB uptake and elimination were identical for the second and third KE drinks, suggesting that βHB may have reached a pseudo-steady state should further identical boluses have been given at similar intervals. Furthermore, when the KE was given at a constant rate via a NG tube, blood ketone concentrations remained ~3 mM. Therefore, repeated KE drinks effectively maintain ketosis at the intervals and doses studied here.

If the goal is to deplete glucose levels so that we can start producing ketone bodies, then forcibly exerting physical energy through exercise is a great way to go about it. Keeping it relatively low intensity to begin with and working out in the morning is recommended as this helps to keep down your cortisol (stress hormone) levels. This only applies at the beginning of your keto adaptation process, as intense workouts such as HIIT once already keto-adapted will be completely fine.
How BHB turns into energy is a fairly simple process. As we’ve mentioned, beta hydroxybutryate eventually leads to energy production after you consume it or after your body breaks stored body fat down. It does this by going into the cell, entering the mitochondria (energy factories) at which stage it cleaves the carboxyl acid group and becomes acetoacetate (another “ketone body”). Acetoacetate turns into acetoacetyl-CoA, which then is cleaved to acetone (another “ketone body”) and acetyl-CoA. Acetyl-CoA is the whole reason we want BHB in the first place. This jumps into what is called the Kreb’s cycle (don’t you remember any of your biochemistry classes?) and is churned into ATP — the energy currency of your cells!
That’s not all. Though Prüvit in particular has a legion of fans (the brand has nearly 35,000 Instagram followers and some 256,000 likes on Facebook) and a small team of affiliated medical experts, there’s no hard science on Prüvit or similar products. (Prevention reached out to several Prüvit experts and employees for interviews but did not receive a response.) The research page on the brand’s website does include links to legit scientific studies. But the studies are on the keto diet—not on Prüvit’s products. When it comes to research on the actual supplements, the brand’s website simply says “Human studies on finished products (underway) at various universities and research facilities.” In other words, there’s no scientific evidence available yet to show that they actually work.

Measurements taken included whole blood glucose and BHB (every 5 minutes); VO2 and VCO2 (every 15 seconds); HR (continuous); RQ is calculated as the ratio of VO2 and VCO2. In the video of this post I explain what VO2, VCO2, and RQ tell us about energy expenditure and substrate use—very quickly, RQ typically varies between about 0.7 and 1.0—the closer RQ is to 0.7, the more fat is being oxidized; the reverse is true as RQ approaches 1.0

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×