The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
The liver is always producing ketones to some small degree and they are always present in the bloodstream. Under normal dietary conditions, ketone concentrations are simply too low to be of any significant benefit. A ketogenic diet and exogenous ketone supplements will increase the amount of ketone in your body. The idea that ketones are “toxic” is ridiculous. Ketones are a normal physiological substance that play many important roles in the human body.
Working memory involves temporarily storing and manipulating information. The game involves seeing three cards – a top card with a symbol that then moves along a track and is flipped over, exposing a new card above. The goal is to remember the symbol of the cards two cards back and indicate whether it matches the visible card or not. If you have ever played dual n-back games, this is very similar.
Fortunately a new way to test ketosis has been developed - and that is by measuring acetone levels in the breath. This is rather new technology but based on the reports I have seen it does look reasonably reliable. The testing process is simple, you use a device like that made by Ketonix, you breathe into it, wait a minute or so and it will give you a color indicating the state of ketosis you are in. However, there are numerous downsides:
Interestingly, the effects of exogenous ketones on blood substrate concentrations were preserved with the metabolic stimulus of a mixed meal. Following KE drinks, FFA and glucose fell and remained low in both fed and fasted subjects, despite higher insulin throughout the fed arm, suggesting that there was no synergistic effect of insulin and βHB to further lower blood glucose or FFA. In agreement with previous work, the threshold for the effects of βHB on glucose and lipids appears to be low (<1 mM), as there was no significant dose-response relationship between increasing blood βHB and the small changes in plasma FFA, TG or glucose across all of the study drinks (Mikkelsen et al., 2015).
Also, it’s important to remember that just because something may be SAFE (and to reiterate, I’m not saying a long term ketogenic diet is safe), it doesn’t mean it’s good for you or beneficial. Running Marathons could be considered safe (especially if it’s on a closed race circuit), but does this mean it’s good for you? Or should you be out running marathons every day?
If the claims about the benefits of exogenous ketones are accurate and true, then it’s fantastic news for people who are looking to enhance their keto lifestyle and who have the money to spend. But two of our core values are trustworthiness and goodness, and it is important to us to test assumptions made by marketing claims and help make sure that people are getting what they are told they are getting when they spend money on a product.
While the KetoneAid folks have been seeing tremendous success working with elite athletes to improve athletic performance, I thought it would be interesting to quantify the effects of ketone esters on cognitive performance. For the week prior to taking the ketones, I re-established baseline scores in a number of cognitive testing areas using Lumosity*:
The same question posed in a different way can be, what’s better, getting protein from powder or from a grass-fed steak or wild salmon? Omega-3 from supplements or from a variety of healthy wild fish? Just like with health supplements where you consume an isolated nutrient instead of the whole food where it comes from, if it’s possible to get what you need from whole food or nutrition, then that’s probably the best choice.
LDL is the lipoprotein particle that is most often associated with atherosclerosis. LDL particles exist in different sizes: large molecules (Pattern A) or small molecules (Pattern B). Recent studies have investigated the importance of LDL-particle type and size rather than total concentration as being the source for cardiovascular risk [56]. Patients whose LDL particles are predominantly small and dense (Pattern B) have a greater risk of cardiovascular disease (CVD). It is thought that small, dense LDL particles are more able to penetrate the endothelium and cause in damage and inflammation [82–85]. Volek et al. reported that the KD increased the pattern and volume of LDL particles, which is considered to reduce cardiovascular risk [73]. Though we did not show a significant effect on LDL levels for ketone supplements, future chronic feeding studies will investigate the effects of ketone supplementation on lipidomic profile and LDL particle type and size.

An alternative to the ketogenic diet is consumption of drinks containing exogenous dietary ketones, such as ketone esters (KE) and ketone salts (KS). The metabolic effects of KS ingestion have been reported in rats (Ari et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017), in three extremely ill pediatric patients (Plecko et al., 2002; Van Hove et al., 2003; Valayannopoulos et al., 2011) and in cyclists (O'Malley et al., 2017; Rodger et al., 2017). However, the concentrations of blood βHB reached were low (<1 mM) and a high amount of salt, consumed as sodium, potassium and/or calcium βHB, was required to achieve ketosis. Furthermore, dietary KS are often racemic mixtures of the two optical isoforms of βHB, d-βHB, and l-βHB, despite the metabolism of l-βHB being poorly understood (Webber and Edmond, 1977; Scofield et al., 1982; Lincoln et al., 1987; Desrochers et al., 1992). The pharmacokinetics and pharmacodynamics of KS ingestion in healthy humans at rest have not been reported.

Do you need carbs to train? No. Again this is an anecdote only, but I have done numerous training sessions in a carb deprived state. Heck some of my best training sessions where done in a fasted, carb deprived state. And there are a lot of endurance athletes who are using a ultra-low carb/ketogenic diet and putting up some great times (more on this below).
Participants consumed 13.2−1 of βHB (6.6−1 or 1,161 mg/kg of KE) over 9 h, either as 3 drinks of 4.4−1 of βHB at 3 h intervals (n = 12), or as an initial bolus of 4.4−1 of βHB given through a nasogastric tube, followed by an infusion of 1.1−1, beginning 60 min after the initial bolus, for 8 h (n = 4). Two participants completed both conditions (total n = 14). In both conditions, the KE was diluted to 1.5 L using the same citrus water as used in Study 2.
The effects of ketone drinks on endogenous insulin secretion are unclear. Whilst the small increase in plasma insulin after KE and KS drinks may have been due to the small quantity of dextrose in the diluent, it has been proposed that ketones could potentiate or even stimulate insulin secretion. Isolated pancreatic islets secreted insulin when stimulated by ketones at glucose concentrations of >5 mM (Biden and Taylor, 1983), and small amounts of insulin are secreted in vivo following exposure to exogenous ketones in animals (Madison et al., 1964; Miles et al., 1981). In response to an intra-venous 10 mM glucose clamp, ketone ester drinks increased glucose uptake and plasma insulin (Holdsworth et al., 2017). The increases in insulin with ketone drinks taken whilst fasted were small compared to the increases seen when the ketone ester drink was consumed with a meal and with consumption of a dextrose drink. Furthermore, the lack of difference in peak plasma insulin between the two latter conditions indicates that nutritional ketosis did not inhibit or increase normal carbohydrate induced insulin production.

The way you make an exogenous BHB is by attaching it to some type of other compound (sodium, potassium, calcium, or magnesium) so that your body can process the molecule by cleaving the bond between the salt and the beta hydroxybutyrate. BHB + bound to a salt = BHB salts, which is what most people in the ketosis community call exogenous ketones. There are also things called esters, which are basically unbound BHB molecules. These are really disgusting and cause massive digestive issues, so I like to ignore them until we can produce them in a more appealing way.
When you start this process, changes in your daily food and drink intake are designed to increase the amount of healthy fats being burned by your liver, which produces and releases more of these endogenous ketones into your blood stream. When breastfeeding, the female body naturally burns more fat to produce the endogenous ketones, which is an infants resource to the nutrients they need for their young minds. As an adult, a lot of us have substituted the goodness of this compound for more sugar fueled energy. However, I'm sure there are many of you that are wondering right now, "does keto work at all and if so how long does ketosis last?" After numerous tests and studies, it has been recognized that it indeed does work and has been proven to have long lasting effects, so you can rest easy and maybe throw away those weight loss pills that claim instant results but don’t seem to do much.
If the goal is to deplete glucose levels so that we can start producing ketone bodies, then forcibly exerting physical energy through exercise is a great way to go about it. Keeping it relatively low intensity to begin with and working out in the morning is recommended as this helps to keep down your cortisol (stress hormone) levels. This only applies at the beginning of your keto adaptation process, as intense workouts such as HIIT once already keto-adapted will be completely fine.
Glucose and BHB went down slightly throughout the effort and RQ fell, implying a high rate of fat oxidation. We can calculate fat oxidation from these data. Energy expenditure (EE), in kcal/min, can be derived from the VO2 and VCO2 data and the Weir equation. For this effort, EE was 14.66 kcal/min; RQ gives us a good representation of how much of the energy used during the exercise bout was derived from FFA vs. glucose—in this case about 87% FFA and 13% glucose. So fat oxidation was approximately 12.7 kcal/min or 1.41 g/min. It’s worth pointing out that “traditional” sports physiology preaches that fat oxidation peaks in a well-trained athlete at about 1 g/min. Clearly this is context limited (i.e., only true, if true at all, in athletes on high carb diets with high RQ). I’ve done several tests on myself to see how high I could push fat oxidation rate. So far my max is about 1.6 g/min. This suggests to me that very elite athletes (which I am not) who are highly fat adapted could approach 2 g/min of fat oxidation. Jeff Volek has done testing on elites and by personal communication he has recorded levels at 1.81 g/min. A very close friend of mine is contemplating a run at the 24 hour world record (cycling). I think it’s likely we’ll be able to get him to 2 g/min of fat oxidation on the correct diet.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright ©