A typical serving of racemic ketone salts contains around 12g of beta hydroxybutyrate, of which only half is the D- form (6g). Compared to the 40g ketone esters I consumed (which are 100% D- form), I would need to consume somewhere around seven to nine packets of ketone salts to get the same amount of D-β-hydroxybutyrate (some D- form is wasted burning of the L- form), along with the huge amount of salts contained and more than a gallon of water (since the powders must be mixed). Even if one could consume that amount of ketone salts, they will probably suffer from what people often refer as “disaster pants” (aka diarrhea) due to the amount of salt consumed.

The way you make an exogenous BHB is by attaching it to some type of other compound (sodium, potassium, calcium, or magnesium) so that your body can process the molecule by cleaving the bond between the salt and the beta hydroxybutyrate. BHB + bound to a salt = BHB salts, which is what most people in the ketosis community call exogenous ketones. There are also things called esters, which are basically unbound BHB molecules. These are really disgusting and cause massive digestive issues, so I like to ignore them until we can produce them in a more appealing way.


The effects of ketone drinks on endogenous insulin secretion are unclear. Whilst the small increase in plasma insulin after KE and KS drinks may have been due to the small quantity of dextrose in the diluent, it has been proposed that ketones could potentiate or even stimulate insulin secretion. Isolated pancreatic islets secreted insulin when stimulated by ketones at glucose concentrations of >5 mM (Biden and Taylor, 1983), and small amounts of insulin are secreted in vivo following exposure to exogenous ketones in animals (Madison et al., 1964; Miles et al., 1981). In response to an intra-venous 10 mM glucose clamp, ketone ester drinks increased glucose uptake and plasma insulin (Holdsworth et al., 2017). The increases in insulin with ketone drinks taken whilst fasted were small compared to the increases seen when the ketone ester drink was consumed with a meal and with consumption of a dextrose drink. Furthermore, the lack of difference in peak plasma insulin between the two latter conditions indicates that nutritional ketosis did not inhibit or increase normal carbohydrate induced insulin production.

BHB Salts and exogenous ketone supplements are literally changing the supplement industry. These products are pretty new and a little more expensive than other supplements. But I’d rather pay for something that works then spend tons of money chasing products that claim to work.  One of the most popular ketone supplements is Pruvit’s Keto OS. You can check out our review here.
In terms of getting back into Ketosis, Keto//OS would most likely be a better choice (and a change back to a low-carb diet, of course) because it not only has MCTs, but also provides beta-hydroxybutyrate, which is the product that comes from your liver after it synthesizes acetoacetate. However, since this product also has caffeine (great for workouts), you might want to go with the decaf if you’re strictly looking for a ketosis jumpstart.
As KE drinks achieved a significantly higher d-βHB concentrations than KS, we investigated factors that may be important in the use of ketone drinks to achieve nutritional ketosis. Initially we determined the repeatability of blood ketosis following KE drinks and found little variation in kinetic parameters between individuals. Variability between participants was less than within the population, and accurate individual prediction of the d-βHB Cmax following a body-weight adjusted KE drink was achieved. Variability within individuals was likely due to normal daily changes in GI function, including gastric emptying, portal blood flow or intestinal transit time, which may alter KE hydrolysis and absorption.

Unless otherwise stated, statistical analysis was conducted using Prism 6™ software. Values, expressed as means ± SEM, were considered significantly different at p < 0.05. Initial tests were undertaken to ensure that normality and sphericity assumptions were not violated. Subsequently, either one or two way repeated measures ANOVA, or Freidman's test with post-hoc Tukey or Dunnet's correction were performed, to compare changing concentrations of substrates, electrolytes, pH, insulin, breath and urinary βHB: both over time and between study interventions. In Study 2, data from each of the two study visits in each condition (fed and fasted) completed by an individual were included in the analysis.
Participants consumed 13.2 mmol.kg−1 of βHB (6.6 mmol.kg−1 or 1,161 mg/kg of KE) over 9 h, either as 3 drinks of 4.4 mmol.kg−1 of βHB at 3 h intervals (n = 12), or as an initial bolus of 4.4 mmol.kg−1 of βHB given through a nasogastric tube, followed by an infusion of 1.1 mmol.kg.h−1, beginning 60 min after the initial bolus, for 8 h (n = 4). Two participants completed both conditions (total n = 14). In both conditions, the KE was diluted to 1.5 L using the same citrus water as used in Study 2.
The other option – which is the superior option – is the breakdown of fat into a fuel that can be used by the brain. This is a beautiful solution, because even the leanest individual will have weeks and weeks’ worth of energy stored as body fat. The body breaks down this fat in the liver and converts it into ketone bodies. The brain can then utilise these ketones as a fuel source – forgoing the need for stored glucose or constant consumption of carbohydrates. These ketones can also be used to make ATP.
It is a good idea to weigh the pros and cons before deciding to add a calcium supplement to your diet. This includes exogenous ketone supplements. If you have any risk factors for osteoporosis, have low bone density, or have issues that prevent you from consuming a nutrient-rich diet, then the benefits of calcium supplements will likely outweigh the risks. But don’t forget that there are other avenues to improving your bone density, like strength training, and, more importantly, a well-balanced diet.
Over four visits, participants (n = 15) consumed 1.6 and 3.2 mmol.kg−1 of βHB as KE (141 mg/kg and 282 mg/kg of R-3-hydroxybutyl-R-1,3-hydroxybutyrate) or as KS (KetoForce, KetoSports, USA) sodium and potassium βHB, containing 1.6–3.2 g of each cation), plus 6 g of sweetener containing 19 kCal (4 g of carbohydrate) (Symrise, Holzminden, Germany), diluted to 300 ml using water. Drink blinding was not possible due to unmaskable differences in taste (bitter vs. salty).
This molecule is quite essential if you are using your own fat for fuel, or taking BHB as an exogenous ketone supplement to increase energy production — essentially to be in nutritional ketosis. If you’re not certain about what ketones are or what nutritional ketosis is, you should back up a little bit and read more about that on my company site, Perfect Keto.

For the ketone esters, on the other hand, repeated doses of 20-30 grams in any one day may be possible. Thus these products may be able to maintain a modest level of ketonemia without dietary carbohydrate restriction. Thus some of the cardiac and brain fueling benefits may follow, not to mention the epigenetic effects limiting oxidative stress and inflammation. But given the recent observation that administered ketone esters markedly reduce circulating free fatty acids (Myette-Cote 2018) — possibly due to an insulin-tropic effect or direct suppression of lipolysis (Taggart 2005) — their sustained use in people with underlying insulin resistance may compromise their long-term benefits by promoting weight gain unless combined with carbohydrate restriction.
More tolerable than MCT oil: MCT oil has been known to cause gastrointestinal distress in users, especially when taken in higher amounts. Exogenous ketones in the form of ketone salts, in comparison, are well-tolerated. Thus they enable one to avoid adverse GI events while providing the body with similar types of benefits. Figure 2 shows Ketone esters can be effective at reducing appetite. A combination of MCT oil and exogenous ketones may aid weight loss and allow a lower loading of ketone supplements, without the GI distress seen with MCT oil.

In conclusion, drinks containing exogenous ketones, in either ester or salt form, can raise concentrations of blood βHB in humans, although elevation of l-βHB lasts longer after racemic KS consumption. Both KE and KS drinks mildly altered acid-base balance. Exogenous ketones lowered blood glucose and lipids without inhibiting endogenous insulin secretion. The KE delivered highly repeatable blood concentrations of d-βHB, although ketosis was decreased by a meal. Uptake and elimination of d-βHB were similar when several drinks were consumed in succession. The dietary KE could maintain ketosis using drinks taken regularly around a normal meal pattern, or using a continuous infusion via a nasogastric tube. Therefore, ketone drinks are a viable and practical alternative to dietary strategies to achieve ketosis.
A growing number of people are giving it a try, thanks to exogenous ketone supplements that claim to launch your body into a state of ketosis within two and a half days—even if you’ve been living on pasta and cookies instead of following a low-carb diet. How can that be, though? And can that kind of rapid transformation actually be safe? Here’s what you should know.

Intermittent fasting will significantly help the body transition into ketosis as limiting your consumption of food for that many hours will help deplete the system of any excess glucose. It’s a shock to the system and research has shown that daily fasting can have other profound effects aside from weight control such as autophagy, lowering risks of heart disease and diabetes, as well as an improvement in cognitive function. So if you’re still wondering how to get into ketosis in 24 hours, then fasting will surely kick things into gear!


First, there’s something unnatural about having elevated levels of ketones and glucose together. It’s really hard to make that happen using traditional whole foods. The closest natural approximation you could get to it would be the traditional coconut-rich diets of the Kitava people in the South Pacific, where the medium chain triglycerides (MCT) in the coconut fat increased ketone production alongside the carbs in the fruit and tubers they ate. They had excellent metabolic health, but they weren’t anywhere close to a ketogenic diet. Coconut fat isn’t as ketogenic as purified MCT oil, let alone exogenous ketones.
Ketone Bodies are then used by tissues as a source of energy3 through a pathway that leads to formation from β-hydroxybutyrate of two molecules of acetyl CoA, which are used finally in the Krebs cycle. It is interesting to note that the KBs are able to produce more energy compared with glucose because of the metabolic effects of ketosis—the high chemical potential of 3-β-hydroxybutyrate leads to an increase in the ΔG0 of ATP hydrolysis.3 
88. Yost T, Erskine J, Gregg T, Podlecki D, Brass E, Eckel R. Dietary substitution of medium chain triglycerides in subjects with non-insulin-dependent diabetes mellitus in an ambulatory setting: impact on glycemic control and insulin-mediated glucose metabolism. J Am Coll Nutr. 1994;13(6):615–22. doi: 10.1080/07315724.1994.10718457. [PubMed] [CrossRef]

When the results for the supplement and the placebo were within 0.2 (either % or mmol/L) of each other, we classed the supplement as neither “better” nor “worse” than the placebo. We gave a “winning brand” sticker to the brand that scored highest against the placebo for each marker, but not for physical performance, since none of the supplements performed better than the placebo for that marker.


Some think so because higher ketone levels imply increased fuel for the brain and heart (that prefer ketones), and increased protection against inflammation and oxidation. But are the health benefits coming from the ketones themselves, or are they coming from the state you have to put your body in to actually produce them? And if you're kicking yourself out of ketosis by ingesting ketones would you still get the same benefits?
Instead of being bound to a mineral (like ketone salts), the ketone molecule (BHB or AcAc) is bound to a ketone precursor (e.g. butanediol or glycerol) via an ester bond. While there aren't as many esters on the market as salts, there is still some variance–especially when looking at the ketone molecule in these products. Before selecting the best one for you, it's important to gather all the necessary information to make your decision.

Exogenous ketones are becoming more popular as advancements in scientific research continue to show how they work to improve both health and performance. At first, the only options for delivering exogenous ketones were unpalatable ketone esters; however, exogenous ketones can now be taken in the form of ketone mineral salts that are more palatable and easily blended in water. Making ketone mineral salts involves combining beta-hydroxybutyrate (BHB) with mineral salts such as sodium, calcium, magnesium, or potassium. Before considering whether ketone supplements are a good option, most people immediately look at the salt load, and rightfully so. It is important to take into account the nutritional and health impact of not only the BHB but the minerals that are used to make the product.
Ketologie’s PROBHB is a proprietary, “first of its kind” dietary supplement that is totally unique and different to all other exogenous ketone products on the market. Ketologie’s PROBHB is the only BHB supplement specifically formulated with resistant probiotics to assist the body’s transition into nutritional ketosis and simultaneously support immune and digestive health. Our unique formulation optimizes the pathways for improved communication between the brain and the enteric nervous system; providing superior conditions for BHB uptake across the blood-brain barrier. It’s also delicious (slightly sweet and salty) and affordable as we are able to offer it to you directly, rather than via a multi-level marketing program.
For all studies, the area under the curve (AUC) of blood [βHB] was calculated using the trapezium rule. In Study 3, for each of the three drinks, the initial rate of d-βHB appearance was estimated using d-βHB concentrations at baseline and 30 min post-drink, and d-βHB elimination was estimated using the AUC between the post-drink peak (60 min) and trough (180 min) d-βHB concentrations, with a baseline correction to the value at 180 min.
With oral ketone supplementation, we observed a significant elevation in blood βHB without dietary restriction and with little change in lipid biomarkers (Fig. 1). Over the 4 week study, MCT-supplemented rats demonstrated decreased HDL compared to controls. No significant changes were observed in any of the triglycerides or lipoproteins (HDL, LDL) with any of the remaining exogenously applied ketone supplements. It should be noted that the rats used for this study had not yet reached full adult body size [79]. Their normal growth rate and maturation was likely responsible for the changes in triglyceride and lipoprotein levels observed in the control animals over the 4 week study (baseline data not shown, no significant differences) [80, 81]. Future studies are needed to investigate the effect of ketone supplementation on fully mature and aged animals. Overall, our study suggests that oral ketone supplementation has little effect on the triglyceride or lipoprotein profile after 4 weeks. However, it is currently unknown if ketone supplementation would affect lipid biomarkers after a longer duration of consumption. Further studies are needed to determine the effects of ketone supplements on blood triglyceride and lipoproteins after chronic administration and as a means to further enhance the hyperketonemia and improve the lipid profile of the clinically implemented (4:1) KD.
The many roles of magnesium include helping us maintain normal nerve and muscle function, as well as heart rate, supporting a healthy immune system, regulating blood glucose levels, and making energy production and protein synthesis possible[23]. Magnesium is also involved in both aerobic and anaerobic energy production. ATP synthesis (the body’s energy source) depends on enzymes that are activated by magnesium.
Another effect of the ketone drinks was to lower blood glucose, free fatty acids, and triglyceride levels. This sounds great. Elevated levels of all those markers are harbingers of disease, particularly if they remain chronically elevated. But think about what this means. If free fatty acids go down, that means adipose tissue isn’t being liberated for burning.
When choosing an exogenous ketone supplement, make sure to read the ingredients carefully. Brands that have a “proprietary blend” don’t allow you to see the quantities of each ingredient in their mix. You should know every detail about the supplements you choose, so you know exactly what is affecting your body, and you have control over the variables of your intake.
Is keto safe? Putting yourself through this type of therapy isn't always easy and the process can take some getting used to, in particular during the initial stages when people must go through a period of fasting in order to raise ketone bodies faster. Of course, by doing this, it can put your body through a bit of shock and may cause a person to experience some short-term side effects until their bodies begin to adapt to the lifestyle and any BHB supplement they may be taking.

However, with the ketone esters, the effects are nearly immediate, and my entire body was humming throughout the entire day, but not in a jittery way. I was full of mental and physical energy that lasted without any sort of crash (it was a gradual taper). During my cognitive tests, things felt almost effortless as I played the various games. After my experiment was complete I continued writing code for several hours, then went to the gym to work out. I did forget to each lunch though, so there must be some suppressive effect on appetite.

Every 7 days, animals were briefly fasted (4 h, water available) prior to intragastric gavage to standardize levels of blood metabolites prior to glucose and βHB measurements at baseline. Baseline (time 0) was immediately prior to gavage. Whole blood samples (10 μL) were taken from the saphenous vein for analysis of glucose and βHB levels with the commercially available glucose and ketone monitoring system Precision Xtra™ (Abbott Laboratories, Abbott Park, IL). Blood glucose and βHB were measured at 0, 0.5, 1, 4, 8, and 12 h after test substance administration, or until βHB returned to baseline levels. Food was returned to animals after blood analysis at time 0 and gavage. At baseline and week 4, whole blood samples (10 μL) were taken from the saphenous vein immediately prior to gavage (time 0) for analysis of total cholesterol, high-density lipoprotein (HDL), and triglycerides with the commercially available CardioChek™ blood lipid analyzer (Polymer Technology Systems, Inc., Indianapolis, IN). Low-density lipoprotein (LDL) cholesterol was calculated from the three measured lipid levels using the Friedewald equation: (LDL Cholesterol = Total Cholesterol - HDL - (Triglycerides/5)) [51, 52]. Animals were weighed once per week to track changes in body weight associated with hyperketonemia.


Why is this desirable? Think about energy production in your body much like macro energy consumption on a planetary level. Coal is gross and dirty and messes tons of different things up. You need to continue to burn it to get energy. Solar power is free, clean and pretty much limitless. This is pretty much the same story when you are burning carbs (coal) versus fats (solar) for energy.
We demonstrated that therapeutic ketosis could be induced without dietary (calorie or carbohydrate) restriction and that this acute elevation in blood ketones was significantly correlated with a reduction in blood glucose (Figs. 2, ​,33 and ​and4).4). The BMS ketone supplement did not significantly induce blood hyperketonemia or reduced glucose in the rats. The KE supplemented rats trended towards reduced glucose levels; however, the lower dose of this agent did not lower glucose significantly, as reported previously in acute response of mice [59]. MCTs have previously been shown to elicit a slight hypoglycemic effect by enhancing glucose utilization in both diabetic and non-diabetic patients [86–88]. Kashiwaya et al. demonstrated that both blood glucose and blood insulin decreased by approximately 50 % in rats fed a diet where 30 % of calories from starch were replaced with ketone esters for 14 days, suggesting that ketone supplementation increases insulin sensitivity or reduced hepatic glucose output [89]. This ketone-induced hypoglycemic effect has been previously reported in humans with IV infusions of ketone bodies [90, 91]. Recently, Mikkelsen et al. showed that a small increase in βHB concentration decreases glucose production by 14 % in post-absorptive health males [92]. However, this has not been previously reported with any of the oral exogenous ketone supplements we studied. Ketones are an efficient and sufficient energy substrate for the brain, and will therefore prevent side effects of hypoglycemia when blood levels are elevated and the patient is keto-adapted. This was most famously demonstrated by Owen et al. in 1967 wherein keto-adapted patients (starvation induced therapeutic ketosis) were given 20 IU of insulin. The blood glucose of fasted patients dropped to 1–2 mM, but they exhibited no hypoglycemic symptoms due to brain utilization of ketones for energy [93]. Therefore, ketones maintain brain metabolism and are neuroprotective during severe hypoglycemia. The rats in the MCT group had a correlation of blood ketone and glucose levels at week 4, whereas the combination of BMS + MCT produced a significant hypoglycemic correlation both at baseline and at week 4. No hypoglycemic symptoms were observed in the rats during this study. Insulin levels were not measured in this study; however, future ketone supplementation studies should measure the effects of exogenous ketones on insulin sensitivity with a glucose tolerance test. An increase in insulin sensitivity in combination with our observed hypoglycemic effect has potential therapy implications for glycemic control in T2D [40]. Furthermore, it should be noted that the KE metabolizes to both AcAc and βHB in 1:1 ratio [29]. The ketone monitor used in this study only measures βHB as levels of AcAc are more difficult to measure due to spontaneous decarboxylation to acetone; therefore, the total ketone levels (βHB + AcAc) measured were likely higher, specifically for the KE [14]. Interestingly, the 10 g/kg dose produced a delayed blood βHB peak for ketone supplements MCT and BMS + MCT. The higher dose of the ketogenic supplements elevated blood levels more substantially, and thus reached their maximum blood concentration later due to prolonged metabolic clearance. It must be noted that the dosage used in this study does not translate to human patients, since the metabolic physiology of rats is considerably higher. Future studies will be needed to determine optimal dosing for human patients.
The product does not work. I have taken one scoop daily and for last two days two scoops (once in the morning and once in the night). I also do intermittent fast i.e. no food from 8 pm - next day 2 pm other than this powder in the morning. My food is 1500 calories with 60% fat, 30% protein and 5% carbs. I used to achieve ketosis naturally prior to using the powder. But now, there is no ketosis. This product does not work. I am wondering how on earth did they pick up so many reviews, unless it is faked marketing.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×