All of the data I’ll present below were from an experiment I did with the help of Dominic D’Agostino and Pat Jak (who did the indirect calorimetry) in the summer of 2013. (I wrote this up immediately, but I’ve only got around to blogging about it now.) Dom is, far and away, the most knowledgeable person on the topic of exogenous ketones. Others have been at it longer, but none have the vast experiences with all possible modalities (i.e., esters versus salts, BHB versus AcAc) and the concurrent understanding of how nutritional ketosis works. If people call me keto-man (some do, as silly as it sounds), they should call Dom keto-king.

If you are not on a vigorous exercise plan, I wouldn't go more than about a scoop a day (if you are a 30min/day, low carb person like me) because some of the research available says that if you get into ketosis using diet only and supplement with extra ketones, you may experience a slower rate of weight loss since you are getting your ketones from a supplement rather than the body transforming fat to ketones. As I progress, I will probably move up to 2 scoops per day.


Two ground-breaking studies have recently been published on the effects of intermittent fasting on males. One group of researchers studied the effects that 16 hours of intermittent fasting had on males that lift weights. They found that muscle mass stayed the same, fat mass decreased significantly, and the males who fasted for 16 hours a day burned more fat for fuel compared to the control group that only fasted for 12 hours.
Hypoglycemia: why not to be concerned – Taking exogenous ketones can drive blood glucose levels quite low, but you are not likely to feel the typical symptoms of hypoglycemia. This is because when ketone levels are high enough, they dominate as fuel in the brain; hence, you will feel just fine despite having low blood glucose. A highly-cited study by George Cahill, found elevated ketone levels could protect fasted participants when they were administered insulin to induce hypoglycemia.
The CNS cannot use fat as an energy source; hence, it normally utilizes glucose. After 3–4 days without carbohydrate consumption the CNS is ‘forced' to find alternative energy sources, and as demonstrated by the classic experiments of Cahill and colleagues4 this alternative energy source is derived from the overproduction of acetyl coenzyme A (CoA). This condition seen in prolonged fasting, type 1 diabetes and high-fat/low-carbohydrate diets leads to the production of higher-than-normal levels of so-called ketone bodies (KBs), that is, acetoacetate, β-hydroxybutyric acid and acetone—a process called ketogenesis and which occurs principally in the mitochondrial matrix in the liver.6
Yes. Both producing BHB in your liver as well as supplementing with beta hydroxybutyrate very safe. As we mentioned before, levels of 0.5 – 3.0 mmol measured in a blood test are completely normal. Some people get stressed out when they hear the term “diabetic ketoacidosis” or DKA, which is an entirely different metabolic scenario where your BHB levels skyrocket to 15-25 mmol blood readings.
Intellectual property covering uses of dietary ketone and ketone ester supplementation is owned by BTG Ltd., the University of Oxford, the National Institute of Health and TΔS Ltd. Should royalties ever accrue from these patents, KC and PC, as inventors, will receive a share of the royalties under the terms prescribed by the University of Oxford. KC is a director of TΔS Ltd., a company spun out of the University of Oxford to develop and commercialize products based on the science of ketone bodies in human nutrition. At the time of data collection and manuscript preparation, BS was an employee of TΔS Ltd., funded by the Royal Commission for the Exhibition of 1851. SH is an employee of NTT DOCOMO, Inc. (Japan). The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
For whatever reason, many patients won’t attempt a ketogenic diet—even if the evidence is clear that it could help. Doctors are often hesitant to recommend dramatic dietary shifts—even if they believe in their efficacy—to patients who are already dealing with difficult health issues. If you’ve got a picky kid with epilepsy, a pickier adult with Alzheimer’s, or a cancer patient who refuses to give up the familiar-yet-non-ketogenic foods that give him some small manner of comfort in this trying ordeal, exogenous ketones could make a big difference.
North Americans typically live pro-inflammatory, pro-disease lives (think about your everyday: likely sitting in a flexed position for hours on end, not enough natural sunlight, not enough movement, artificial food stuffs, artificial colouring, going to bed late, blue light exposure, less in-person contact with our loved ones, late night snacks, the list goes on and on).
Not everything is perfect with Ketōnd, so there are a few things you should know. One is that it is extremely powerful. The company is pretty adamant about taking the correct dosage - and they are right. This isn't your typical ketone supplement. I'd recommend starting off at half a scoop, even if you are used to taking a different ketone supplement. Odds are if you have your product was underdosed. So, it’s kind of a pain to remember all the time, but once you feel good with the half serving then you can work your way up to a full scoop. If you think it is too strong for you – just take one serving a day, not two, and you will be okay.
To determine the reason for the differences in blood d-βHB concentration, the KE and KS drinks were analyzed for enantiomeric purity. The KE contained >99% of the d-isoform, whereas ~50% of the KS βHB was the l-isoform (Figure ​(Figure1D).1D). Plasma samples from participants who consumed the high dose KS drink (n = 5) were analyzed to reveal higher l-βHB than d-βHB, the total βHB Cmax being 3.4 ± 0.2 mM (Figure ​(Figure1E),1E), with a total βHB AUC of 549 ± 19 mmol.min. After 4 h, plasma l-βHB remained elevated at 1.9 ± 0.2 mM; differences in urinary excretion of the two isoforms could not explain this observation as both d- and l-βHB were excreted in proportion to their blood AUCs (Figure ​(Figure1F).1F). Therefore, in order to determine the time required for l-βHB elimination, a follow-up experiment was undertaken in which subjects (n = 5) consumed 3.2 mmol.kg−1 of βHB as KE and KS with hourly blood and breath sample collection up to 4 h, plus additional samples at 8 h and 24 h post-drink. l-βHB was found to be 1.1 ± 0.1 mM at 4 h, and 0.7 ± 0.2 mM after 8 h, but undetectable after 24 h (Figure 1G). Low amounts of d-βHB (0.3 ± 0.1 mM) were present at 24 h, presumably due to endogenous production. Both ketone drinks significantly increased breath acetone concentration, but at a slower rate than blood d-βHB, reaching a peak after 3 h that was twice as high following the KE (87 ± 9 ppm) than the KS (44 ± 10 ppm), suggesting that d-βHB was readily converted to acetone, but l-βHB was not (p < 0.005, Figure ​Figure1H1H).

There’s debate raging about which dietary tactic is the god particle for making you leaner, faster and healthier. How the ketogenic diet option squares off against the low carb route is vital for understanding the ways in which exogenous ketone supplements work. To get into ketosis the natural way, you need to keep your carb intake low enough for long enough for your body to begin using use fat as fuel. Your liver then converts a portion of that fat into energy molecules called ketones. These work together with glucose as a fuel source, but can actually kick in faster, allowing your body to operate more economically during lengthy, high-energy exercise efforts.


If the claims about the benefits of exogenous ketones are accurate and true, then it’s fantastic news for people who are looking to enhance their keto lifestyle and who have the money to spend. But two of our core values are trustworthiness and goodness, and it is important to us to test assumptions made by marketing claims and help make sure that people are getting what they are told they are getting when they spend money on a product.

Hey Staci, great to hear you’re getting back into it! To answer your question, it really depends on the individual but there are definitely things you can do to get back into ketosis faster – working out to deplete your glycogen stores or implementing intermittent fasting into your regimen – these are 2 common ways that should kick start you back in the right direction!
We’ve all been taught that high sodium intake is bad for us, similar to how we’ve been told for decades that fat is the driver of coronary heart disease, and consuming large amounts will kill us.  Sodium has been thought to increase blood pressure, and therefore increase the risk of heart disease, kidney disease, stroke, osteoporosis, and stomach cancer. Thus, many of us tend to avoid consuming foods or supplements with labels that have high amounts of sodium.
Intellectual property covering uses of dietary ketone and ketone ester supplementation is owned by BTG Ltd., the University of Oxford, the National Institute of Health and TΔS Ltd. Should royalties ever accrue from these patents, KC and PC, as inventors, will receive a share of the royalties under the terms prescribed by the University of Oxford. KC is a director of TΔS Ltd., a company spun out of the University of Oxford to develop and commercialize products based on the science of ketone bodies in human nutrition. At the time of data collection and manuscript preparation, BS was an employee of TΔS Ltd., funded by the Royal Commission for the Exhibition of 1851. SH is an employee of NTT DOCOMO, Inc. (Japan). The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Plenty of supplements make you a fractionally better sportsman and these are no different. The synthetic exogenous ketones helped Olympic-caliber cyclists cover an average of 411 additional meters during a 30-minute time-trial, which resulted in a two percent increase in overall speed, found a paper in Cell Metabolism. That can be the difference between feeling the glorious tug of the winner’s ribbon across your chest or rolling in with the stragglers.
In Summary, I think it’s important to do your own research and draw your own conclusion about the long term risks of ketosis. For some people, a ketogenic diet may be a necessity given their health situation. For those of us who do not suffer from such health conditions I would present the question ‘why do you want to follow a strict ketogenic diet for an extended period’, and then follow this up with ‘are the potential risks and sacrifices worth the benefits?’
Ketosis is a natural process that more and more people are flocking to these days in an effort to stay fit and healthy. Studies show that it has a host of health benefits and plays a key role in maintaining or changing your physical appearance by helping you lose weight. This is due to the fact that when the body is in a state of ketosis, it converts fat into compounds known as ketones, effectively turning fat into a source of energy.
Interest in the ketogenic diet is at an all-time high, and for good reason. It’s a great way to lose body fat, gain steady energy throughout the day, increase fat-burning capacity at rest and during exercise, reduce inflammation, and improve cognitive function. Keto also has a number of promising medical applications, including seizure control, enhanced efficacy of chemotherapy, and abatement of age-related cognitive impairment.

BHB Salts and exogenous ketone supplements are literally changing the supplement industry. These products are pretty new and a little more expensive than other supplements. But I’d rather pay for something that works then spend tons of money chasing products that claim to work. One of the most popular ketone supplements is Ketōnd. You can check out our review here.
In a subset of participants (n = 7) the effect of 3.2 mmol.kg−1 of βHB as KE and KS on blood pH and electrolytes after ketone drinks was investigated. Blood d-βHB kinetics were similar to those in the initial experiment (Figure ​(Figure3A).3A). After 60 min, blood pH declined from 7.41 to 7.31 following a KE drink (p < 0.001, Figure ​Figure3B).3B). Bicarbonate fell significantly from 23.6 ± 0.7 to 17.0 ± 0.8 mM following KE drinks (p < 0.001), but remained within the normal range (Figure 3C). Both ketone drinks significantly decreased blood potassium concentrations by 0.7 mM (both drinks p < 0.05, Figure 3D) and increased sodium and chloride concentrations (Sodium: both drinks p < 0.05, Chloride: KE = p < 0.05, KS = p < 0.005, Figures 3E,F).
Why is this desirable? Think about energy production in your body much like macro energy consumption on a planetary level. Coal is gross and dirty and messes tons of different things up. You need to continue to burn it to get energy. Solar power is free, clean and pretty much limitless. This is pretty much the same story when you are burning carbs (coal) versus fats (solar) for energy.
Ketones are produced by the body as a indicator of the body starting to use fat for fuel. Your body then uses those ketones as brain fuel (mostly) , but if you were to have a carb meal it would kick your body out of ketosis (fat burning state) because the carbs are a more easily usable source of energy. So why would you want to add a outside source of energy such as ketones not naturally produced by the body its self? It would kick you out of the fat burning state just like the carbohydrate meal because your body rather spare it’s own energy source as much as possible and also since the outside source ketones are not naturally produce by the body your body does not go into fat burning state because it doesn’t have to go through the natural process to produce its own ketones meaning the body is in its fat burning state since ketones are a by product of fat being used as fuel. Your body has to go through the natural process by itself. Outside ketones are treated as a alternative fuel source so your body has no reason to use fat as its fuel source. Just like carbs. Don’t fall for the scam do your homework it’s science backed up by facts. https://www.t-nation.com/diet-fat-loss/avoid-this-ketogenic-rip-off

 “Though the small amount of carbohydrates in the diets may be more than balanced by the potential sugar production from the large amount of protein to keep the ratio of fatty acid to glucose below the generally accepted level of ketogenesis, the respiratory quotient data suggest another mechanism also” ß (most likely the CPT-1A mutation, which had not been discovered at that time)


If you do the same calculations as I did above for estimating fat oxidation, you’ll see that EE in this case was approximately 13.92 kcal/min, while fat oxidation was only 67% of this, or 9.28 kcal/min, or 1.03 g/min. So, for this second effort (the test set) my body did about 5% less mechanical work, while oxidizing about 25% less of my own fat. The majority of this difference, I assume, is from the utilization of the exogenous BHB, and not glucose (again, I will address below what I think is happening with glucose levels).

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×