Ketones are produced by the body as a indicator of the body starting to use fat for fuel. Your body then uses those ketones as brain fuel (mostly) , but if you were to have a carb meal it would kick your body out of ketosis (fat burning state) because the carbs are a more easily usable source of energy. So why would you want to add a outside source of energy such as ketones not naturally produced by the body its self? It would kick you out of the fat burning state just like the carbohydrate meal because your body rather spare it’s own energy source as much as possible and also since the outside source ketones are not naturally produce by the body your body does not go into fat burning state because it doesn’t have to go through the natural process to produce its own ketones meaning the body is in its fat burning state since ketones are a by product of fat being used as fuel. Your body has to go through the natural process by itself. Outside ketones are treated as a alternative fuel source so your body has no reason to use fat as its fuel source. Just like carbs. Don’t fall for the scam do your homework it’s science backed up by facts. https://www.t-nation.com/diet-fat-loss/avoid-this-ketogenic-rip-off
An alternative to the ketogenic diet is consumption of drinks containing exogenous dietary ketones, such as ketone esters (KE) and ketone salts (KS). The metabolic effects of KS ingestion have been reported in rats (Ari et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017), in three extremely ill pediatric patients (Plecko et al., 2002; Van Hove et al., 2003; Valayannopoulos et al., 2011) and in cyclists (O'Malley et al., 2017; Rodger et al., 2017). However, the concentrations of blood βHB reached were low (<1 mM) and a high amount of salt, consumed as sodium, potassium and/or calcium βHB, was required to achieve ketosis. Furthermore, dietary KS are often racemic mixtures of the two optical isoforms of βHB, d-βHB, and l-βHB, despite the metabolism of l-βHB being poorly understood (Webber and Edmond, 1977; Scofield et al., 1982; Lincoln et al., 1987; Desrochers et al., 1992). The pharmacokinetics and pharmacodynamics of KS ingestion in healthy humans at rest have not been reported.
All data are presented as the mean ± standard deviation (SD). Data analysis was performed using GraphPad PRISM™ version 6.0a and IBM SPSS Statistics 22.0. Results were considered significant when p < 0.05. Triglyceride and lipoprotein profile data were analyzed using One-Way ANOVA. Blood ketone and blood glucose were compared to control at the applicable time points using a Two-Way ANOVA. Correlation between blood βHB and glucose levels in ketone supplemented rats was compared to controls using ANCOVA analysis. Organ and body weights were analyzed using One-Way ANOVA. Basal blood ketone and blood glucose levels were analyzed using Two-Way ANOVA. All mean comparisons were carried out using Tukey’s multiple comparisons post-hoc test.
If you’ve done any reading about ketosis, you no doubt read at some point that ketosis is a “natural” state. You may have read on a bit more and learned what is meant by that statement or you may have simply skipped ahead to the keto success stories and decided to give it a try. But we’d like to direct your attention back to that little tidbit of information about keto being “natural” for a moment.
All of the data I’ll present below were from an experiment I did with the help of Dominic D’Agostino and Pat Jak (who did the indirect calorimetry) in the summer of 2013. (I wrote this up immediately, but I’ve only got around to blogging about it now.) Dom is, far and away, the most knowledgeable person on the topic of exogenous ketones. Others have been at it longer, but none have the vast experiences with all possible modalities (i.e., esters versus salts, BHB versus AcAc) and the concurrent understanding of how nutritional ketosis works. If people call me keto-man (some do, as silly as it sounds), they should call Dom keto-king.
Unless otherwise stated, statistical analysis was conducted using Prism 6™ software. Values, expressed as means ± SEM, were considered significantly different at p < 0.05. Initial tests were undertaken to ensure that normality and sphericity assumptions were not violated. Subsequently, either one or two way repeated measures ANOVA, or Freidman's test with post-hoc Tukey or Dunnet's correction were performed, to compare changing concentrations of substrates, electrolytes, pH, insulin, breath and urinary βHB: both over time and between study interventions. In Study 2, data from each of the two study visits in each condition (fed and fasted) completed by an individual were included in the analysis.
Blood d-βHB concentrations rapidly increased to a maximum of 2.8 ± 0.2 mM following the KE drink and to 1.0 ± 0.1 mM following the KS drink (Figure ​(Figure1A).1A). After the peak was reached, blood d-βHB disappearance was non-linear, and followed first order elimination kinetics as reported previously (Clarke et al., 2012b; Shivva et al., 2016). d-βHB Tmax was ~2-fold longer following KS drinks vs. KE drinks (p < 0.01, Figure ​Figure1B),1B), and KS d-βHB AUC was ~30–60% lower than the KE drink (p < 0.01, Figure ​Figure1C1C).

I wrote this post at about the same time Germany won the World Cup in Rio de Janeiro in 2014. There’s been a lot of moving and shaking in the world of exogenous ketones since then, not to mention soccer. Looking back on my post, I still consider it relevant in terms of what exogenous ketones possibly can (and cannot) do for performance. In this case, to see if exogenous ketone esters provide me a “boost” by allowing me to do the same amount of work while expending less energy (and work at a relatively lower VO2) compared to no supplementation.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×