I’m already following a ketogenic diet and have been fat adapted for about 3 months. Since I’m already in ketosis would this product help me or hinder my fat loss? My thought is that if I’m already in a fat burning state and then I take exogenous ketones does my body stop burning my fat to burn the ingested ketones like taking a break or does the product enhance the fat burning that is already taking place?
For all studies, the area under the curve (AUC) of blood [βHB] was calculated using the trapezium rule. In Study 3, for each of the three drinks, the initial rate of d-βHB appearance was estimated using d-βHB concentrations at baseline and 30 min post-drink, and d-βHB elimination was estimated using the AUC between the post-drink peak (60 min) and trough (180 min) d-βHB concentrations, with a baseline correction to the value at 180 min.
I just started down the Keto path with the help (hopefully) of Ketond. My problem with all the websites and info I’ve seen is that no-one says how often you should take the EK. The packages say the serving size is one scoop…. but how many servings per day? It (Ketond) also says one serving will put you in Ketosis for 3-5 hours – so, does that mean you should take another serving after the 3-5 hours to stay in Ketosis?
One other thing I must point out is also that we are talking about being in ketosis and not being fully keto adapted. You enter ketosis when your body starts producing ketones above a specified level, being fully keto adapted means that your body is full adapted to  use fat as your primary energy source and that the production of certain enzymes in your body is fully adapted. This doesn’t happen in one day and it takes about 1 month on average to be fully keto adapted. But we are not looking for this as we just want to end the most unpleasant period and to start losing weight.
Plenty of supplements make you a fractionally better sportsman and these are no different. The synthetic exogenous ketones helped Olympic-caliber cyclists cover an average of 411 additional meters during a 30-minute time-trial, which resulted in a two percent increase in overall speed, found a paper in Cell Metabolism. That can be the difference between feeling the glorious tug of the winner’s ribbon across your chest or rolling in with the stragglers.
Look around your grocery store, and you’ll soon start to see “Fortified with Calcium” on a variety of different labels, along with calcium supplements everywhere you look. Calcium is essential for cardiovascular health, but several studies have found too much calcium to be associated with cardiovascular events and even death.  One study found that consumption of 1000+ mg of supplemental calcium per day was associated with an increased risk of death from cardiovascular disease in men but not women[13]. Dietary calcium intake (i.e., calcium from incorporated foods such as milk, etc.), on the other hand, was not associated with death from cardiovascular disease in men or women. Additionally, a different study found 1000 mg of supplemental calcium to be associated with an increase in rates of cardiovascular events in women[14].
Appetite suppression: Appetite was measured in 10 males and 5 females after consuming a ketone ester (KE) or a dextrose (DEXT) drink . Desire to eat and perception of hunger dropped after both drinks, but the KE was 50% more effective for 1.5-4hrs. Insulin levels rose for both drinks but were 3x less with the KE drink after 30mins (Fig 2). The hunger hormone, ghrelin, was significantly lower between 2 to 4 hours after drinking the KE (Fig 2). In conclusion Ketone esters delay the onset of hunger and lower the desire to eat. 8
The fate of excess ketones: In the event someone has an excessive amount of ketones in the blood, the body (specifically the kidneys) will work as quickly as possible to filter out ketones via urine rather than converting them to adipose tissue.9 This is not to say that you can’t gain fat if you consume an exorbitant amount of exogenous ketones, but that they are less prone to be converted to fat than other nutrients.
The keto-esters are more appropriate for delivering higher doses of BOHB, but with repeated dosing can push the limits of taste and GI tolerance. There has been fairly extensive research on a compound 3-hydroxybutyl 3-hydroxybutyrate that is converted via hydrolysis and liver metabolism to yield 2 molecules of ketones, presumably mostly D-BOHB (Clarke 2012 and 2014). In a study involving lean athletes, an approximate 50 gram dose raised blood BOHB levels to 3 mM after 10 min and reached 6 mM by 20 min. Submaximal exercise resulted in increased ketone disposal from 2 to 3 hours and contributed significantly to whole body energy use during exercise (Cox 2016). This product has been shown to significantly reduce appetite after a single dose (Stubbs 2018) but its effect on body weight in humans over a longer period of time has not been studied, nor has its effect on blood glucose control been reported in humans with type 2 diabetes. However a single dose prior to a glucose tolerance test in healthy humans reduced blood glucose area-under-curve by 11% and non-esterified fatty acid area-under-curve by 44% (Myette-Cote 2018).
The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
I’m getting an increasing number of questions about exogenous ketones. Are they good? Do they work for performance? Is there a dose-response curve? If I’m fasting, can I consume them without “breaking” the fast? Am I in ketosis if my liver isn’t producing ketones, but my BOHB is 1.5 mmol/L after ingesting ketones? Can they “ramp-up” ketogenesis? Are they a “smart drug?” What happens if someone has high levels of both glucose and ketones? Are some products better than others? Salts vs esters? BHB vs AcAc? Can taking exogenous ketones reduce endogenous production on a ketogenic diet? What’s the difference between racemic mixtures, D-form, and L-form? What’s your experience with MCTs and C8?

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com