The classical KD consists of a 4:1 ratio of fat to protein and carbohydrate, with 80–90 % of total calories derived from fat [27]. The macronutrient ratio of the KD induces a metabolic shift towards fatty acid oxidation and hepatic ketogenesis, elevating the ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) in the blood. Acetone, generated by decarboxylation of AcAc, has been shown to have anticonvulsant properties [28–32]. Ketone bodies are naturally elevated to serve as alternative metabolic substrates for extra-hepatic tissues during the prolonged reduction of glucose availability, suppression of insulin, and depletion of liver glycogen, such as occurs during starvation, fasting, vigorous exercise, calorie restriction, or the KD. Although the KD has clear therapeutic potential, several factors limit the efficacy and utility of this metabolic therapy for widespread clinical use. Patient compliance to the KD can be low due to the severe dietary restriction - the diet being generally perceived as unpalatable - and intolerance to high-fat ingestion. Maintaining ketosis can be difficult as consumption of even a small quantity of carbohydrates or excess protein can rapidly inhibit ketogenesis [33, 34]. Furthermore, enhanced ketone body production and tissue utilization by the tissues can take several weeks (keto-adaptation), and patients may experience mild hypoglycemic symptoms during this transitional period [35].

While the KetoneAid folks have been seeing tremendous success working with elite athletes to improve athletic performance, I thought it would be interesting to quantify the effects of ketone esters on cognitive performance. For the week prior to taking the ketones, I re-established baseline scores in a number of cognitive testing areas using Lumosity*:
Again, there are very interesting animal studies plus some single case reports and small uncontrolled trials of humans with neurodegenerative disease and cancer given ketogenic diets and/or exogenous ketones (Murray 2016, Poff 2015, Roberts 2017, Newport 2015, Cunnane 2016). In some cases where the patient does not have the cognitive resources to comply with a well-formulated ketogenic diet, or where target blood levels of BOHB that work in animals are hard to achieve in humans by diet alone, supplemental ketones may have an important role to play in the prevention, management, or reversal of these disease categories.
We designed a test for each of the chosen benefit claims and enlisted the help of four of our Diet Doctor teammates to try out the supplements and go through the testing. They were Jonatan and Giorgos from the video team, Emőke from the recipe team and Erik from the IT team. We had a mix of people who were naturally in endogenous ketosis during testing, and people who were not.
That’s not all. Though Prüvit in particular has a legion of fans (the brand has nearly 35,000 Instagram followers and some 256,000 likes on Facebook) and a small team of affiliated medical experts, there’s no hard science on Prüvit or similar products. (Prevention reached out to several Prüvit experts and employees for interviews but did not receive a response.) The research page on the brand’s website does include links to legit scientific studies. But the studies are on the keto diet—not on Prüvit’s products. When it comes to research on the actual supplements, the brand’s website simply says “Human studies on finished products (underway) at various universities and research facilities.” In other words, there’s no scientific evidence available yet to show that they actually work.

Various reasons can motivate you to get into ketosis as part of the Ketogenic Diet. These may range from medical purposes so that you stay healthy, to keeping various ailments away. If you are an athlete, you may get into ketosis to keep your body fit for the upcoming competitions. Some people get into ketosis just to shed some extra fat and keep their bodies in perfect shape. Regardless of the reasons, here are practical tips on how to get into ketosis in 24 hours.

Effects of ketone supplementation on basal blood ketone and basal blood glucose levels: Rats administered ketone supplements did not have a significant change in basal blood ketone levels (a) or basal blood glucose levels (b) for the four week study. Two-Way ANOVA with Tukey’s post-hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Effects of ketone supplementation on blood glucose. a, b Blood glucose levels at times 0, 0.5, 1, 4, 8, and 12 h (for 10 dose) post intragastric gavage for ketone supplements tested. a Ketone supplements BMS + MCT and MCT significantly reduced blood glucose levels compared to controls for the duration of the 4-week study. BMS significantly lowered blood glucose only at 8 h/week 1 and 12 h/week 3 (b) KE, maintained at 5 g/kg, significantly reduced blood glucose compared to controls from week 1–4. BD did not significantly affect blood glucose levels at any time point during the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
While ketone salts are widely available, unfortunately in the near-term ketone esters are in short supply and the only people who will be able to afford taking them several times per day will be elite athletes, the military, corporate CEO-types, and professional poker players. Even with economies of scale and ramping up production, the cost of raw materials to produce pure ketone esters will keep their price tag prohibitively high for most people, but could realistically get down to a few dollars per gram.

Animal procedures were performed in accordance with the University of South Florida Institutional Animal Care and Use Committee (IACUC) guidelines (Protocol #0006R). Juvenile male Sprague–Dawley rats (275–325 g, Harlan Laboratories) were randomly assigned to one of six study groups: control (water, n = 11), BD (n = 11), KE (n = 11), MCT (n = 10), BMS (n = 11), or BMS + MCT (n = 12). Caloric density of standard rodent chow and dose of ketone supplements are listed in Table 1. On days 1–14, rats received a 5 g/kg body weight dose of their respective treatments via intragastric gavage. Dosage was increased to 10 g/kg body weight for the second half of the study (days 15–28) for all groups except BD and KE to prevent excessive hyperketonemia (ketoacidosis). Each daily dose of BMS would equal ~1000–1500 mg of βHB, depending on the weight of the animal. Intragastric gavage was performed at the same time daily, and animals had ad libitum access to standard rodent chow 2018 (Harlan Teklad) for the duration of the study. The macronutrient ratio the standard rodent chow was 62.2, 23.8 and 14 % of carbohydrates, protein and fat respectively.

In the second of these posts I discuss the Delta G implications of the body using ketones (specifically, beta-hydroxybutyrate, or BHB, and acetoacetate, or AcAc) for ATP generation, instead of glucose and free fatty acid (FFA). At the time I wrote that post I was particularly (read: personally) interested in the Delta G arbitrage. Stated simply, per unit of carbon, utilization of BHB offers more ATP for the same amount of oxygen consumption (as corollary, generation of the same amount of ATP requires less oxygen consumption, when compared to glucose or FFA).

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright ©