Ketōnd is an intelligently designed formula containing an industry leading 13,900mg blend of high-powered goBHB™ all packed into a 100% transparent, proprietary blend free formula. Ketōnd is widely known as the most ‘potent’ exogenous ketone supplement available that has been formulated for anyone looking to manage their weight, maximize cognition, or simply feel more energetic in a low carbohydrate environment.

I’m getting an increasing number of questions about exogenous ketones. Are they good? Do they work for performance? Is there a dose-response curve? If I’m fasting, can I consume them without “breaking” the fast? Am I in ketosis if my liver isn’t producing ketones, but my BOHB is 1.5 mmol/L after ingesting ketones? Can they “ramp-up” ketogenesis? Are they a “smart drug?” What happens if someone has high levels of both glucose and ketones? Are some products better than others? Salts vs esters? BHB vs AcAc? Can taking exogenous ketones reduce endogenous production on a ketogenic diet? What’s the difference between racemic mixtures, D-form, and L-form? What’s your experience with MCTs and C8?
KE consumption decreased FFA from 0.6 to 0.2 mM, TG from 1.0 to 0.8 mM, and glucose from 5.5 to 4.7 mM by the end of the study (4 h). The effect was not altered by a meal (Figures 5A–C). Dextrose drinks also lowered FFA from 0.6 to 0.2 mM and TG from 1.0 to 0.7 mM (Figures 5A, B). This was likely mediated by the transient increase in glucose, which rose from 4.6 to 6.5 mM following the dextrose drink (Figure ​(Figure5C).5C). The anti-lypoytic effect of dextrose drinks was shorter than that of KE drinks as d-βHB concentrations were elevated for longer after KE drinks than glucose after dextrose drinks. Insulin increased to ~ 35−1 after both the meal and the dextrose drink, but also increased to 13 ± 2−1 when KE was consumed whilst fasted owing to the 15 g of glucose in the flavored drink used as a diluent (Figure ​(Figure5D5D).
Over five visits, participants (n = 16) consumed either 4.4−1 of βHB (2.2−1 or 395 mg/kg of KE; 1 mole of KE delivered 2 moles of d-βHB equivalents): twice whilst fasted, and twice following a standardized meal, or an isocaloric dextrose drink without a meal. To improve palatability, drinks were diluted to 500 ml with a commercially available, citrus flavored drink containing 65 kCal (5 g of carbohydrate) (Glaceau, UK). The dextrose drink was taste-matched using a bitterness additive (Symrise, Holzminden, Germany). The standard meal consisted of porridge oats (54 g), semi-skimmed milk (360 ml) and banana (120 g), giving 600 kCal per person, with a macronutrient ratio of Carbohydrate: Protein: Fat of 2:1:1.
Bottom line: EK isn't the magic pill for instant weight loss. EK triggers ketosis which is a metabolic state where your body burns fat for fuel. EK increases satiety and feeling full, and boosts energy for exercise which helps you lose weight for the long term. You should always aim for the long term and sustainable weight loss and keep the weight off for good instead of looking for a quick fix.

Your brain has a very tight barrier so not everything in the blood can get through. This is called the blood brain barrier. Because your brain uses 25% of the energy that your entire body uses throughout the day, you need to make sure it is fueled appropriately. Glucose can’t directly cross the blood brain barrier. When you eat carbs, you get swings in energy that is available to cross the blood brain barrier which leads to mental fog.
Hello! I’m planning on taking a short vacation and will be having “kept friendly” drinks, mostly vodka and water with lemon and stevia. When should I take my exogenous ketones? That night before bed or early the next morning or after the 3 day vacation is completely over? I’m unsure how to manage this to have the best odds of staying in ketosis and get back to burning FAT. Also, I just purchased Instaketones from Julian Bakery, what are your thoughts on this brand? Thanks for what you do!
I have tried the following preparations of exogenous ketones: BHB monoester, AcAc di-ester, BHB mineral salt (BHB combined with Na+, K+, and Ca2+). I have consumed these at different concentrations and in combination with different mixing agents, including MCT oil, pure caprylic acid (C8), branch-chained amino acids, and lemon juice (to lower the pH). I won’t go into the details of each, though, for the sake of time.

If you’re somebody who isn’t already a keto-goer, then you might be wondering why? Why do I need to limit my carbohydrate intake to get my body into a state of ketosis? Simply put, and without getting to technical; you want your body to be in a constant state where fat is the is the primary source of fuel for the body rather than glucose. You see, once you eat carbs, the body will break this down into glucose which it will then use for fuel before tapping into your fat reserves for energy. If you limit the amount of glucose that is in your system by restricting your carbohydrate intake, the body has no choice but to tap into your fat stores for energy. Fats are metabolised in the liver where ketones are then produced for your physical and cognitive needs.
Let’s briefly discuss some organic chemistry. Two molecules that are “the same” but mirror images of each other (like your hands) are known as enantiomers, a type of spatial isomer. Beta hydroxybutyrate comes in two forms, D-β-hydroxybutyrate (“right-handed”) and L-β-hydroxybutyrate (“left-handed”). D-β-hydroxybutyrate is the form that is naturally produced in the body and is most bioavailable when taken exogenously.
The other potentially important distinction between nutritional ketosis and chemically-induced ketosis is the potential metabolic role played by liver AcAc production and redox status. Although the ratio of BOHB to AcAc in venous blood is typically 80% to 20%, classic studies by Cahill (1975) have observed important hepatic vein and peripheral arterio-venous gradients for this ratio in keto-adapted patients. What these observations imply is that the liver produces a higher proportion of AcAc than is found in the peripheral blood, and that this is due to uptake of AcAc in peripheral cells (principally muscle) with re-release as BOHB. In the process, the reduction of AcAc to BOHB produces NAD+, which is beneficial to mitochondrial redox state and mitochondrial function (Verdin 2015, Newman 2017).
Ketone supplementation did not affect the size of the brain, lungs, kidneys or heart of rats. As previously mentioned, the rats were still growing during the experimental time frame; therefore, organ weights were normalized to body weight to determine if organ weight changed independently to growth. There could be several reasons why ketones influenced liver and spleen weight. The ratio of liver to body weight was significantly higher in the MCT supplemented animals (Fig. 5). MCTs are readily absorbed in the intestinal lumen and transported directly to the liver via hepatic portal circulation. When given a large bolus, such as in this study, the amount of MCTs in the liver will likely exceed the β-oxidation rate, causing the MCTs to be deposited in the liver as fat droplets [94]. The accumulated MCT droplets in the liver could explain the higher liver weight to body weight percentage observed with MCT supplemented rats. Future toxicology and histological studies will be needed to determine the cause of the observed hepatomegaly. It should be emphasized that the dose in this study is not optimized in humans. We speculate that an optimized human dose would be lower and may not cause hepatomegaly or potential fat accumulation. Nutritional ketosis achieved with the KD has been shown to decrease inflammatory markers such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46], which may account for the observed decrease in spleen weight. As previously mentioned, Veech and colleagues demonstrated that exogenous supplementation of 5 mM βHB resulted in a 28 % increase in hydraulic work in the working perfused rat heart and a significant decrease in oxygen consumption [28, 41, 42]. Ketone bodies have been shown to increase cerebral blood flow and perfusion [95]. Also, ketone bodies have been shown to increase ATP synthesis and enhance the efficiency of ATP production [14, 28, 40]. It is possible that sustained ketosis results in enhanced cardiac efficiency and O2 consumption. Even though the size of the heart did not change for any of the ketone supplements, further analysis of tissues harvested from the ketone-supplemented rats will be needed to determine any morphological changes and to understand changes in organ size. It should be noted that the Harlan standard rodent chow 2018 is nutritionally complete and formulated with high-quality ingredients to optimize gestation, lactation, growth, and overall health of the animals. The same cannot be said for the standard American diet (SAD). Therefore, we plan to investigate the effects of ketone supplements administered with the SAD to determine if similar effects will be seen when the micronutrient deficiencies and macronutrient profile mimics what most Americans consume.
Ketones are naturally slightly acidic, so the combination of BHB with sodium acts as a bit of a buffer to this acidity. Ketones will also naturally act as a diuretic, so you lose salt, potassium calcium and magnesium, and it is generally encouraged to increase sodium intake with ketones. The addition of sodium to the product will replenish this salt loss.
Too much cortisol tells the liver that you are in physical danger and need a lot of energy fast. The brain doesn't understand the difference between physical danger and emotional stress. When emotionally stressed, the brain thinks you're in a life-and-death situation, so the liver comes to your rescue and gives you the glucose you need to fight off your attacker.
Are you ready for a very basic metabolism overview? Most modern humans break down carbohydrates into glucose and this then breaks down further and enters mitochondria to produce ATP, which is the energy system of your cells. In other words, you use carbs for energy. When you are on a ketogenic diet, you are breaking down fats into things called ketone bodies, and this is how you provide your body with energy, instead of via carbohydrates. So, you’re either using carbohydrates for fuel or fat for fuel. 
Been using yur stuff for the last week and tyere is absolutely no change in the amount of ketones based on the ketone strips i use to monitor ketone levels. I use another product as well and switched back and have sustained higher levels of ketones most of the day. Is there a reason that your product doesnot produce the results based on the strip test? I am a larger guy, 260 possibly need more? I have 2 tubs to go through and am not overly optimistic about whats going on.
I carried out a survey among Diet Doctor users as background research to the experiment (a big thank you to the 638 people who responded!). In the survey, 28% of the respondents reported that they do take ketone supplements. The top four benefits that these respondents reported experiencing were increased energy, improved focus/cognition, reduced hunger and weight loss.
I interviewed Dr. Brianna Stubbs, a ketone researcher with a Ph.D. in Metabolic Physiology from the University of Oxford who is now Research Lead at HVMN, specializing in developing ketone esters. She told me that in terms of science on the ketone salts and their effect on physical performance, one of the most-cited benefits of ketone salts, the scientific studies that have been done show at best no effect on physical performance and that, currently, there is no peer-reviewed scientific research on the ketone salt products on the market.
There have been studies done on long term ketogenic diets. This 2004 paper inn Experimental & Clinical Cardiology titled ‘Long-term effects of a ketogenic diet in obese patients’ concluded that obese patients following a ketogenic diet for 24 ‘reduced the body weight and body mass index of the patients. Furthermore, it decreased the level of triglycerides, LDL cholesterol and blood glucose, and increased the level of HDL cholesterol. Administering a ketogenic diet for a relatively longer period of time did not produce any significant side effects in the patients. Therefore, the present study confirms that it is safe to use a ketogenic diet for a longer period of time than previously demonstrated.’
Exogenous ketones drinks are growing in popularity as a method to elevate blood ketone concentrations and mimic a ketogenic diet without the need for dietary changes (Ari et al., 2016; Cox et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017; Evans et al., 2017). The present study describes the pharmacokinetic and pharmacodynamics properties of ketone ester and salt drinks in humans at rest, and characterizes the effects of a prior meal, which is pertinent to use as a dietary supplement. The main findings were that KE drinks elevated blood d-βHB > 50% higher than KS drinks, the latter significantly increasing blood l-βHB, which was metabolized more slowly by the body. Both drinks had similar effects on FFA, TG, glucose and electrolyte concentrations, although with disparate effects on pH. A prior meal decreased total blood d-βHB appearance after a KE drink. Finally, either three KE drinks or nasogastric feeding effectively maintained nutritional ketosis over 1 mM for 9 h.

SHEER Ketones BHB Salts made this top 5 list because they do a good job of avoiding all the common unwanted additives and fillers in BHB salts. It’s good to see we have options to choose from when trying to avoid these types of ingredients. SHEER Ketones’ other ingredients include citric acid, fruit and vegetable juice powder for the color, and “natural flavors.” It uses a stevia leaf extract (Rebaudioside A).
The culprit is often restaurant meals or other meals where the nutrition facts are not available with the food itself. Such “ignorance is bliss” situations allow us to avoid dealing with daunting numbers. Many people don’t hesitate to stop and enjoy a meal at a restaurant, but they freak out when they actually see the numbers on a label.  By now, we all know that opting for fatty meat with a side of veggies cooked in butter isn’t that bad after all.  It turns out that what you thought to be the safe, “healthy,” doctor-approved choice might not always be what you think it is.
Every 7 days, animals were briefly fasted (4 h, water available) prior to intragastric gavage to standardize levels of blood metabolites prior to glucose and βHB measurements at baseline. Baseline (time 0) was immediately prior to gavage. Whole blood samples (10 μL) were taken from the saphenous vein for analysis of glucose and βHB levels with the commercially available glucose and ketone monitoring system Precision Xtra™ (Abbott Laboratories, Abbott Park, IL). Blood glucose and βHB were measured at 0, 0.5, 1, 4, 8, and 12 h after test substance administration, or until βHB returned to baseline levels. Food was returned to animals after blood analysis at time 0 and gavage. At baseline and week 4, whole blood samples (10 μL) were taken from the saphenous vein immediately prior to gavage (time 0) for analysis of total cholesterol, high-density lipoprotein (HDL), and triglycerides with the commercially available CardioChek™ blood lipid analyzer (Polymer Technology Systems, Inc., Indianapolis, IN). Low-density lipoprotein (LDL) cholesterol was calculated from the three measured lipid levels using the Friedewald equation: (LDL Cholesterol = Total Cholesterol - HDL - (Triglycerides/5)) [51, 52]. Animals were weighed once per week to track changes in body weight associated with hyperketonemia.
The protocols carried out in these studies were approved by the the South West Frenchay NHS REC (15/SW/0244) (Study 1) and London Queen's Square REC (14/LO/0288) (Study 2 and 3). The studies were carried out in accordance with the recommendations of the Declaration of Helsinki, apart from pre-registration in a database. All subjects gave written informed consent in accordance with the Declaration of Helsinki.
The body will start making ketones when either we go extended periods without food, or we restrict the one dietary component that stops ketone formation – this being carbohydrates and also minimising protein intake as this also can halt ketone. In turn, your primary source of food is fat, with very little carbohydrate and a small amount of protein.”
The ‘carb-sparing’ effect from BHB suppresses the break down of muscle glycogen. This leads to lower lactate levels. When increasing exercise intensity, fat oxidation (burning) reaches a limit. At that point the muscle burns carbohydrates as fuel. But when consuming Ketone esters, the body does not make this switch. This suggests Ketones are being used instead. 11

BHB easily crosses the blood-brain barrier resulting in easily accessible energy to the brain and muscle tissues, becoming a source of energy after entering the mitochondria, being converted to Acetyl-CoA, and then ATP through the Krebs cycle (the same process that glucose goes through to become ATP). This ultimately results in many direct benefits, including:

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright ©