If the color is close to the original beige of the test strip, it means there are few if any ketones in your urine and you’ll need to make some dietary tweaks. This may include eating less fat. That’s because if you have doubled down on the healthy fats your body may be rebelling. One way to tell is if you are constipated. If you think this is the case, ratchet back the fats by 50% and see if it makes a difference. 


The ketone esters are, hands-down, the worst tasting compounds I have ever put in my body. The world’s worst scotch tastes like spring water compared to these things. The first time I tried 50 mL of BHB monoester, I failed to mix it with anything (Dom warned me, but I was too eager to try them to actually read his instructions). Strategic error. It tasted as I imagine jet fuel would taste. I thought I was going to go blind. I didn’t stop gagging for 10 minutes. (I did this before an early morning bike ride, and I was gagging so loudly in the kitchen that I woke up my wife, who was still sleeping in our bedroom.) The taste of the AcAc di-ester is at least masked by the fact that Dom was able to put it into capsules. But they are still categorically horrible. The salts are definitely better, but despite experimenting with them for months, I was unable to consistently ingest them without experiencing GI side-effects; often I was fine, but enough times I was not, which left me concluding that I still needed to work out the kinks. From my discussions with others using the BHB salts, it seems I have a particularly sensitive GI system.
Most supplements rely on BHB as the source of their exogenous ketone bodies. BHB is converted to acetoacetic acid with a small quantity converted to acetone through a acetoacetate decarboxylase waste pathway. Some of the acetoacetic acid will enter the energy pathway using beta-ketothialase, which converts acetoacetic acid to two Acetyl-CoA molecules (see diagram below2).

The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
BHB Salts and exogenous ketone supplements are literally changing the supplement industry. These products are pretty new and a little more expensive than other supplements. But I’d rather pay for something that works then spend tons of money chasing products that claim to work. One of the most popular ketone supplements is Ketōnd. You can check out our review here.

Are you ready for a very basic metabolism overview? Most modern humans break down carbohydrates into glucose and this then breaks down further and enters mitochondria to produce ATP, which is the energy system of your cells. In other words, you use carbs for energy. When you are on a ketogenic diet, you are breaking down fats into things called ketone bodies, and this is how you provide your body with energy, instead of via carbohydrates. So, you’re either using carbohydrates for fuel or fat for fuel. 
Most people confuse thirst for hunger, and it's crucial to not make that mistake when you're dieting. Try to drink water first before heading to the fridge to get some snacks--you might realize that you're not really hungry at all and you are, in fact, only thirsty. Training yourself to spot the difference between hunger and thirst will help you induce ketosis faster. 
Plenty of supplements make you a fractionally better sportsman and these are no different. The synthetic exogenous ketones helped Olympic-caliber cyclists cover an average of 411 additional meters during a 30-minute time-trial, which resulted in a two percent increase in overall speed, found a paper in Cell Metabolism. That can be the difference between feeling the glorious tug of the winner’s ribbon across your chest or rolling in with the stragglers.
Blood glucose concentrations are decreased during both exogenous and endogenous ketosis, although by different mechanisms. During endogenous ketosis, dietary carbohydrate deficit is the underlying cause of low blood glucose, along with reduced hepatic gluconeogenesis and increased ketone production (Cahill et al., 1966). With exogenous ketosis, carbohydrate stores are plentiful, yet ketones appear to lower blood glucose through limiting hepatic gluconeogenesis and increasing peripheral glucose uptake (Mikkelsen et al., 2015). One clinical use of the ketogenic diet is to improve blood glucose control, yet the elevated blood FFA may increase the risk of heart failure (Holloway et al., 2009). Thus, the ability of exogenous ketones to lower blood glucose without elevating blood FFA concentrations could deliver the desired effect of the diet, whilst also decreasing a potential risk.
Every 7 days, animals were briefly fasted (4 h, water available) prior to intragastric gavage to standardize levels of blood metabolites prior to glucose and βHB measurements at baseline. Baseline (time 0) was immediately prior to gavage. Whole blood samples (10 μL) were taken from the saphenous vein for analysis of glucose and βHB levels with the commercially available glucose and ketone monitoring system Precision Xtra™ (Abbott Laboratories, Abbott Park, IL). Blood glucose and βHB were measured at 0, 0.5, 1, 4, 8, and 12 h after test substance administration, or until βHB returned to baseline levels. Food was returned to animals after blood analysis at time 0 and gavage. At baseline and week 4, whole blood samples (10 μL) were taken from the saphenous vein immediately prior to gavage (time 0) for analysis of total cholesterol, high-density lipoprotein (HDL), and triglycerides with the commercially available CardioChek™ blood lipid analyzer (Polymer Technology Systems, Inc., Indianapolis, IN). Low-density lipoprotein (LDL) cholesterol was calculated from the three measured lipid levels using the Friedewald equation: (LDL Cholesterol = Total Cholesterol - HDL - (Triglycerides/5)) [51, 52]. Animals were weighed once per week to track changes in body weight associated with hyperketonemia.

In addition to the Weir coefficients being potentially off (which impacts EE), the RQ interpretation may be incorrect in the presence of endogenous or exogenous ketones. As a result, the estimation of fat and glucose oxidation may be off (though it’s directionally correct). That said, the current interpretation seems quite plausible—greater fat oxidation when I had to make my ketones; less when I got my ketones for “free.”
Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB.

Zhou Nutrition’s MCT Powder is another great quality MCT powder to try out. Taking a note from Perfect Keto, Zhou uses only Acacia Fiber during its manufacturing process and avoids all use of the common additives and fillers you see in most MCT powders. Zhou’s MCT Powder is made with the patented “goMCT” MCTs. While you don’t get the delicious flavors Perfect Keto have perfected, Zhou’s MCT Powder is a proven product pushing a 4 digit tally in positive reviews. Hundreds have attested to its true lack of flavor and positive ketone results.
BHB supplementation can drastically enhance your insulin sensitivity, resulting in better shuttling of blood glucose into cells.[10] With type-2 diabetes and insulin resistance becoming growing concerns, BHB supplementation may provide a promising alternative for healthy blood glucose regulation in the coming years.Even for everyday gym goers and fitness enthusiasts, increasing insulin sensitivity via BHB supplementation can be a great benefit as this puts your body in a better position for partitioning nutrients/carbohydrates to energetically demanding, glycolytic tissues, such as skeletal muscle.
Her clients have had similar success. One woman, for instance, has gone from around 170 pounds to 140 pounds since April without making any initial dietary changes. She’s started to gravitate towards more keto foods over time, but still eats her favorite high-carb treats. As for exercise? Her routine consists of a couple of walks each week, Heverly says.
Before that though, I do want to touch on MCT oil and it’s impact on ketone levels. MCT – or Medium Chain Triglyceride – are fatty acids that bypass the liver – and become quick energy for the brain and muscles. As they are a fat based energy source (and not a carbohydrate) they are quickly converted into ketones. This means MCT oil is a great way to boost ketone levels in the body.
Most people confuse thirst for hunger, and it's crucial to not make that mistake when you're dieting. Try to drink water first before heading to the fridge to get some snacks--you might realize that you're not really hungry at all and you are, in fact, only thirsty. Training yourself to spot the difference between hunger and thirst will help you induce ketosis faster. 
I am a little confused. I can see how EK’s can help up the state of ketosis, but as far is weight loss is concerned, aren’t the ketones you produce naturally created by the breaking down of your own fat? If I supplement with exogenous ketones, will that slow the natural creation of ketones? Especially if I am eating a higher amount of carbs. Would exogenous ketones speed fat loss, or slow it?
This research is a good reminder to discuss with your doctor before taking any supplements. Given the widespread use of calcium supplements, more research is required before any final conclusions can be drawn. Several ketone companies have tried to avoid the large sodium loads but instead relied on a bump in the calcium content from the BHB ketone salts, seemingly without consideration for the aforementioned results. Calcium BHB will likely absorb slower compared to sodium BHB due to digestion and absorption kinetics.  For those looking to optimize brain uptake of ketones, this probably isn’t the best strategy (as uptake is directly proportional to the levels in the blood).   Be cautious of supplements running from the sodium and chasing the calcium BHB instead, and make sure you factor that into your overall daily needs.
Should We Use Exogenous Ketones? Ketosis serves a purpose, and it’s probably why we’re able to survive on this planet. Being able to go without eating and use stored fats for energy is a survival tool and possibly far more as we’re now seeing with the keto diet. But it’s probably not a good idea to constantly take exogenous ketones and eat a high carb diet (high blood glucose levels). It’s not natural for the body to have high blood glucose and use ketones. This is a personal opinion, so 
Exogenous ketones cause the body to rely less on fat as fuel (see Fig 3). Fat takes longer to metabolise for energy than muscle glycogen. This is why fatty acids are not the preferred fuel under heavy exercise. This could be useful for keto-adapted athletes performing high-intensity cardiovascular or strength training.12 This is particularly useful for the Keto-adapted athlete who wants to undergo high-intensity cardiovascular or strength training.
Also, this experiement should be of interest. Two men followed a ‘traditional Eskimo’ diet for 1 year. After the year eating a low carb high fat diet, it was found that the men had a diminished tolerance to carbohydrates, something that did not occur in Eskimos eating the same diet. It took the mean nearly a month of eating a ‘normal diet’ before their glucose tolerance returned to baseline. 
I carried out a survey among Diet Doctor users as background research to the experiment (a big thank you to the 638 people who responded!). In the survey, 28% of the respondents reported that they do take ketone supplements. The top four benefits that these respondents reported experiencing were increased energy, improved focus/cognition, reduced hunger and weight loss.
We designed a test for each of the chosen benefit claims and enlisted the help of four of our Diet Doctor teammates to try out the supplements and go through the testing. They were Jonatan and Giorgos from the video team, Emőke from the recipe team and Erik from the IT team. We had a mix of people who were naturally in endogenous ketosis during testing, and people who were not.
Administration of ketone supplementation significantly reduced blood glucose over the course of the study (Fig. 3a, b). MCT (5 g/kg) decreased blood glucose compared to control within 30 min which was sustained for 8 h at baseline and at week 1. MCT (10 g/kg) likewise decreased blood glucose within 30 min and lasted through the 12 h time point during weeks 2, 3, and 4. BMS + MCT (5 g/kg) lowered blood glucose compared to control from hours 1–8 only at week 1. BMS + MCT (10 g/kg) lowered blood glucose compared to control within 30 min and remained low through the 12 h time point at weeks 2, 3, and 4. Rats supplemented with BMS had lower blood glucose compared to control at 12 h in week 4 (10) (Fig. 3a). Administration of BD did not significantly change blood glucose levels at any time point during the 4-week study. KE (5 g/kg) significantly lowered blood glucose levels at 30 min for week 1, 2, 3, and 4 and was sustained through 1 h at weeks 2–4 and sustained to 4 h at week 3. (Fig. 3b).
Effects of ketone supplementation on blood glucose. a, b Blood glucose levels at times 0, 0.5, 1, 4, 8, and 12 h (for 10 dose) post intragastric gavage for ketone supplements tested. a Ketone supplements BMS + MCT and MCT significantly reduced blood glucose levels compared to controls for the duration of the 4-week study. BMS significantly lowered blood glucose only at 8 h/week 1 and 12 h/week 3 (b) KE, maintained at 5 g/kg, significantly reduced blood glucose compared to controls from week 1–4. BD did not significantly affect blood glucose levels at any time point during the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
The effects of ketone drinks on endogenous insulin secretion are unclear. Whilst the small increase in plasma insulin after KE and KS drinks may have been due to the small quantity of dextrose in the diluent, it has been proposed that ketones could potentiate or even stimulate insulin secretion. Isolated pancreatic islets secreted insulin when stimulated by ketones at glucose concentrations of >5 mM (Biden and Taylor, 1983), and small amounts of insulin are secreted in vivo following exposure to exogenous ketones in animals (Madison et al., 1964; Miles et al., 1981). In response to an intra-venous 10 mM glucose clamp, ketone ester drinks increased glucose uptake and plasma insulin (Holdsworth et al., 2017). The increases in insulin with ketone drinks taken whilst fasted were small compared to the increases seen when the ketone ester drink was consumed with a meal and with consumption of a dextrose drink. Furthermore, the lack of difference in peak plasma insulin between the two latter conditions indicates that nutritional ketosis did not inhibit or increase normal carbohydrate induced insulin production.
Hi, I still a little confused about when or how to take this. I am trying to get adapted and minimize the flu. Is it most beneficial before eating, after eating, with food or in place of food? I have been keto in the past but this time I am not switching over to fat burning mode even though my macros are good. ( I am thinking it is just too many calories and carbs at this point but I get hungry!) Help please.
There is also evidence that individuals who adhere to a low-carbohydrate or ketogenic diet may require higher sodium intakes. Due to their low carbohydrate contents, these diets reduce insulin levels. Since one of insulin’s roles is to decrease the excretion of sodium in the urine[7], low-carbohydrate and ketogenic dieters excrete more sodium than normal, and are encouraged to salt their meals to increase their sodium intake.
Interest in the ketogenic diet is at an all-time high, and for good reason. It’s a great way to lose body fat, gain steady energy throughout the day, increase fat-burning capacity at rest and during exercise, reduce inflammation, and improve cognitive function. Keto also has a number of promising medical applications, including seizure control, enhanced efficacy of chemotherapy, and abatement of age-related cognitive impairment.
I’m fasting (5 days fast, 2 days food) in an effort to aggressively lose weight. For the most part, I’m not doing the water & salt-only kind of fast… as I will also drink coffee & bone broth… as well as take Perfect Keto Base. Would it be “gilding the lily” to also add MCT powder to my coffee? I’m in nutritional ketosis… ranging from 0.8 to 2.0 or thereabouts.
Nutritional ketosis induced with the KD has proven effective for the metabolic management of seizures and potentially other disorders [1–26]. Here we present evidence that chronic administration of ketone supplements can induce a state of nutritional ketosis without the need for dietary carbohydrate restriction and with little or no effect on lipid biomarkers. The notion that we can produce the therapeutic effects of the KD with exogenous ketone supplementation is supported by our previous study which demonstrated that acutely administered KE supplementation delays central nervous system (CNS) oxygen toxicity seizures without the need for dietary restriction [29]. We propose that exogenous ketone supplementation could provide an alternative method of attaining the therapeutic benefits of nutritional ketosis, and as a means to further augment the therapeutic potential of the KD.
Over five visits, participants (n = 16) consumed either 4.4 mmol.kg−1 of βHB (2.2 mmol.kg−1 or 395 mg/kg of KE; 1 mole of KE delivered 2 moles of d-βHB equivalents): twice whilst fasted, and twice following a standardized meal, or an isocaloric dextrose drink without a meal. To improve palatability, drinks were diluted to 500 ml with a commercially available, citrus flavored drink containing 65 kCal (5 g of carbohydrate) (Glaceau, UK). The dextrose drink was taste-matched using a bitterness additive (Symrise, Holzminden, Germany). The standard meal consisted of porridge oats (54 g), semi-skimmed milk (360 ml) and banana (120 g), giving 600 kCal per person, with a macronutrient ratio of Carbohydrate: Protein: Fat of 2:1:1.

Exogenous ketones have become a popular nutritional supplement since their introduction in 2014. Unfortunately there is a lot of inaccurate information and marketing you have to read through to find the truth about them. This article does the hard work for you. It gets right to the true benefits and drawbacks of exogenous ketones supported by research studies.


That’s not to say that the supplements don’t work. They very well might. But they could also be useless—or even dangerous, says Christine Palumbo, RDN, Nominating Committee member for the Academy of Nutrition and Dietetics. As of right now, there’s no way to know. “Currently, there’s just not enough evidence from research studies to answer those questions,” Barnes adds.
An effective ketosis program requires that you control your appetite. Caffeine has been proven to be an excellent appetite suppressant. It can curb your appetite and reduce your cravings for food. If you are finding it hard to implement intermittent fasting, try to introduce coffee into the equation. If you are not into coffee drinks, try to take tea or use caffeine pills. Both of them contain caffeine, which can help you to adjust smoothly into fasting.
Skipping breakfast on a keto diet is a popular way to boost ketone levels. Despite the age-old myth that breakfast is the most important meal of the day, research shows that breakfast skipping is not only safe but beneficial. Skipping breakfast causes intermittent ketosis and also suppresses appetite [6]. Make sure your next meal of the day isn't too late in the evening as studies show that eating meals late at night causes weight gain and impairs fat metabolism [7].
Compared to our other cellular gasoline (carbs), we can store an unlimited supply of energy from ketones in our body within our fat. When you’re reliant on carbohydrates, you’re forced to keep your tank partly full as we can only store just over 2,000 calories of glycogen from carbs. An empty carb tank results in carb-withdrawal symptoms from not being able to switch into a ketone or fat burning metabolism.

One thing to remember here is that even if your calculated daily ‘keto approved’ protein allowance is (let’s say) 150g, that doesn’t mean you can eat 150g in one meal and still be in ketosis. You may find that you can’t eat more than 40g of protein at a time, otherwise you will drop out of ketosis. OR, you may find you can eat 50g of protein but you need a LOT of fat. Whereas a small serve of 15g of protein without fat might knock you out of ketosis. 


Human's ability to produce and oxidize ketone bodies arguably evolved to enhance survival during starvation by providing an energy source for the brain and slowing the breakdown of carbohydrate and protein stores (Owen et al., 1967; Sato et al., 1995; Marshall, 2010). The brain is normally reliant on carbohydrate as a substrate, being less able to metabolize lipids, despite adipose tissue representing a far larger energy store than muscle and liver glycogen. Therefore, during starvation, lipids are used for hepatic ketogenesis and, via ketone bodies, lipids sustain the brain. Endogenous production of the ketone bodies, d-β-hydroxybutyrate (βHB) and acetoacetate (AcAc), increases slowly, driven by interactions between macronutrient availability (i.e., low glucose and high free fatty acids) and hormonal signaling (i.e., low insulin, high glucagon and cortisol). Produced continuously under physiological conditions, blood ketone concentrations increase during starvation (Cahill, 1970), when consuming a “ketogenic” (low carbohydrate, high-fat) diet (Gilbert et al., 2000) or following prolonged exercise (Koeslag et al., 1980).
BS, KC, and PC designed the research studies. BS, PC, RE, SM, and PS carried out the studies. SH provided the gas analyser used in the study on behalf of NTT DOCOMO Inc. BS, MS, and SM analyzed the data and performed statistical analysis in collaboration with JM. BS wrote the paper with help from KC, PC, and OF. KC had primary responsibility for final content. All authors read and approved the final manuscript.
This was a big surprise. We were at the very least expecting that drinking a ketone supplement would cause blood ketones to rise, but an average increase of 0.33 mmol/L is very small. The supplement associated with the highest average increase in blood ketones was Prüvit’s Keto-OS Max, but it was only an increase of 0.6 mmol/L. Brianna Stubbs, the ketone researcher I consulted with, agrees that an increase of below 2.0-3.0 mmol/L is unlikely to be of much use.
In Study 2 a Student's unequal variance t-test with equal SD was used to compare urine βHB concentrations. Additionally, a linear mixed effects model was constructed to estimate partitions of variance in R, using the lme4 and blme packages (Chung et al., 2013; Bates et al., 2015). Feeding state and visit number were fixed effects in this model, and inter-participant variability was a random effect. Inter-participant variability was calculated according to the adjusted generalized R2 metric (as proposed by Nakagawa and Schielzeth, 2013), to partition variance between the fixed effects of feeding, inter-participant variability, and residual variability. The coefficient of variation for βHB Cmax and AUC were calculated using the method of Vangel (1996).

As repeated KE consumption would be required to maintain nutritional ketosis, we investigated the kinetics of drinks in series and of continuous intra-gastric infusion. During starvation, the accumulation of ketones (>4 mM) reportedly inhibited ketone clearance from the blood, however the underlying mechanism is unknown (Hall et al., 1984; Wastney et al., 1984; Balasse and Fery, 1989). In Study 3, βHB uptake and elimination were identical for the second and third KE drinks, suggesting that βHB may have reached a pseudo-steady state should further identical boluses have been given at similar intervals. Furthermore, when the KE was given at a constant rate via a NG tube, blood ketone concentrations remained ~3 mM. Therefore, repeated KE drinks effectively maintain ketosis at the intervals and doses studied here.


I simply use this to attempt to reduce the symptoms of the "keto-flu" when I'm entering ketosis after blowing my carbs out. The holidays are particularly bad for falling off the keto band-wagon. I've used this three times now to transition back into ketosis and I can report that it does seem to reduce the effects of the keto flu (headache, weakness) that I'd normally experience transitioning back into a low-carbohydrate diet. I typically take it for 3 days and then stop because by that time I'm in ketosis again, but I'd imagine you could take it longer.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×