We’ve all been taught that high sodium intake is bad for us, similar to how we’ve been told for decades that fat is the driver of coronary heart disease, and consuming large amounts will kill us.  Sodium has been thought to increase blood pressure, and therefore increase the risk of heart disease, kidney disease, stroke, osteoporosis, and stomach cancer. Thus, many of us tend to avoid consuming foods or supplements with labels that have high amounts of sodium.
If you are trying to lose weight, following a ketogenic diet can help you burn fat fast. However, trying to get into ketosis can be a frustrating experience. Am I eating too many carbs, not enough fat, too much protein? Getting into ketosis usually takes 3 to 5 days at least, and can take people up to two weeks. Recently I have discovered a simple and easy way to get into ketosis very quickly. I went from eating lots of carbs one night, to in ketosis 24 hours later.
“Imagining that everyone is going to go on a ketogenic diet is very unlikely. I’ve done it myself, and it is hard as a diet to sustain for a long period of time,” said Verdin. “The interest for us in BHB is [if] can we recapitulate all the beneficial effects that we are seeing from the ketogenic diet simply by administering BHB as a food or as a drug, whatever you want to call it.”
The effects of the two exogenous ketone drinks on acid-base balance and blood pH were disparate. In solution the ketone salt fully dissociates (giving a total of 3.2–6.4 g of inorganic cation per drink), allowing βHB− to act as a conjugate base, mildly raising blood and urine pH, as seen during salt IV infusions (Balasse and Ooms, 1968; Balasse, 1979). Urinary pH increased with the salts as the kidneys excreted the excess cations. In contrast, KE hydrolysis in the gut provides βHB− with butanediol, which subsequently underwent hepatic metabolism to form the complete keto-acid, thus briefly lowering blood pH to 7.31. Electrolyte shifts were similar for both KE and KS drinks and may have occurred due to βHB− metabolism, causing cellular potassium influx and sodium efflux (Palmer, 2015).
Yes. Both producing BHB in your liver as well as supplementing with beta hydroxybutyrate very safe. As we mentioned before, levels of 0.5 – 3.0 mmol measured in a blood test are completely normal. Some people get stressed out when they hear the term “diabetic ketoacidosis” or DKA, which is an entirely different metabolic scenario where your BHB levels skyrocket to 15-25 mmol blood readings.
In conclusion, drinks containing exogenous ketones, in either ester or salt form, can raise concentrations of blood βHB in humans, although elevation of l-βHB lasts longer after racemic KS consumption. Both KE and KS drinks mildly altered acid-base balance. Exogenous ketones lowered blood glucose and lipids without inhibiting endogenous insulin secretion. The KE delivered highly repeatable blood concentrations of d-βHB, although ketosis was decreased by a meal. Uptake and elimination of d-βHB were similar when several drinks were consumed in succession. The dietary KE could maintain ketosis using drinks taken regularly around a normal meal pattern, or using a continuous infusion via a nasogastric tube. Therefore, ketone drinks are a viable and practical alternative to dietary strategies to achieve ketosis.
How did I do this? Simple, I went into a full fast and exercised. What prevents you from entering ketosis is all the glycogen stored in your liver and muscles. Your body can use this glycogen instead of ketones to fuel your brain, so until you deplete your stores of glycogen, you won’t be able to enter ketosis. By eating nothing, you are going to tap into the glycogen to fuel your brain because you are eating 0 grams of carbs and will also be using that glycogen to walk around all day.
For all studies, the area under the curve (AUC) of blood [βHB] was calculated using the trapezium rule. In Study 3, for each of the three drinks, the initial rate of d-βHB appearance was estimated using d-βHB concentrations at baseline and 30 min post-drink, and d-βHB elimination was estimated using the AUC between the post-drink peak (60 min) and trough (180 min) d-βHB concentrations, with a baseline correction to the value at 180 min.
Also, it’s important to remember that just because something may be SAFE (and to reiterate, I’m not saying a long term ketogenic diet is safe), it doesn’t mean it’s good for you or beneficial. Running Marathons could be considered safe (especially if it’s on a closed race circuit), but does this mean it’s good for you? Or should you be out running marathons every day?
We are told by our parents, doctors, and the media that milk builds strong bones and that we should take calcium supplements to help protect against osteoporosis. Indeed, calcium deficiency can lead to a plethora of health problems[12]. However, those of us who take calcium supplements or consume calcium-fortified foods and beverages may, in fact, be consuming above the Recommended Dietary Allowance (RDA) of calcium.
More tolerable than MCT oil: MCT oil has been known to cause gastrointestinal distress in users, especially when taken in higher amounts. Exogenous ketones in the form of ketone salts, in comparison, are well-tolerated. Thus they enable one to avoid adverse GI events while providing the body with similar types of benefits. Figure 2 shows Ketone esters can be effective at reducing appetite. A combination of MCT oil and exogenous ketones may aid weight loss and allow a lower loading of ketone supplements, without the GI distress seen with MCT oil.

As ketone drinks can deliver nutritional ketosis without fasting, we investigated the effect of food on KE uptake and metabolism. It is well documented that food in the gut can slow, or prevent, the uptake of small hydrophilic hydrocarbons, such as βHB (Melander, 1978; Toothaker and Welling, 1980; Horowitz et al., 1989; Fraser et al., 1995), so decreased gut βHB uptake is probably the cause of lower blood βHB following the meal. Despite higher blood βHB concentrations in the fasted state, the meal did not alter plasma AcAc. This suggests that the rate of conversion of βHB to AcAc may not match the rate of appearance of βHB following KE consumption. Alternatively, meal-induced changes in the hepatic ratio of NAD+:NADH may have altered the conversion of βHB to AcAc (Himwich et al., 1937; Desrochers et al., 1992).
Elliot received his BS in Biochemistry from the University of Minnesota and has been a freelance writer specializing in nutritional and health sciences for the past 5 years. He is thoroughly passionate about exercise, nutrition, and dietary supplementation, especially how they play a role in human health, longevity, and performance. In his free time you can most likely find him lifting weights at the gym or out hiking through the mountains of Colorado. He will also host the upcoming BioKeto podcast. You can connect with him on Facebook (https://www.facebook.com/elliot.reimers) and Instagram (@eazy_ell)
In conclusion, drinks containing exogenous ketones, in either ester or salt form, can raise concentrations of blood βHB in humans, although elevation of l-βHB lasts longer after racemic KS consumption. Both KE and KS drinks mildly altered acid-base balance. Exogenous ketones lowered blood glucose and lipids without inhibiting endogenous insulin secretion. The KE delivered highly repeatable blood concentrations of d-βHB, although ketosis was decreased by a meal. Uptake and elimination of d-βHB were similar when several drinks were consumed in succession. The dietary KE could maintain ketosis using drinks taken regularly around a normal meal pattern, or using a continuous infusion via a nasogastric tube. Therefore, ketone drinks are a viable and practical alternative to dietary strategies to achieve ketosis.

Since beta hydroxybutyrate is transported throughout the body via the blood, the best way to check your true BHB levels is through a blood test. The good news is that you can just use a simple finger prick and an at home method that is very similar to how diabetics check their glucose. The bad news is that it can be pretty expensive. Each strip and time you test can be around $4-6.


Do you need carbs to train? No. Again this is an anecdote only, but I have done numerous training sessions in a carb deprived state. Heck some of my best training sessions where done in a fasted, carb deprived state. And there are a lot of endurance athletes who are using a ultra-low carb/ketogenic diet and putting up some great times (more on this below).
I’m already following a ketogenic diet and have been fat adapted for about 3 months. Since I’m already in ketosis would this product help me or hinder my fat loss? My thought is that if I’m already in a fat burning state and then I take exogenous ketones does my body stop burning my fat to burn the ingested ketones like taking a break or does the product enhance the fat burning that is already taking place?

Venous blood samples (2 ml) were obtained during all visits using a 22 G catheter inserted percutaneously into an antecubital vein. The catheter was kept patent using a saline flush following each sample collection. Additionally, during Study 1, arterialized blood from a catheter inserted into a heated hand (Forster et al., 1972) was collected into heparinized blood gas syringes (PICO 100, Radiometer, Copenhagen) from a subset of participants (n = 7) and immediately analyzed for pH and electrolytes using a clinical blood gas analyser (ABL, Radiometer, Copenhagen).
Do you need carbs to train? No. Again this is an anecdote only, but I have done numerous training sessions in a carb deprived state. Heck some of my best training sessions where done in a fasted, carb deprived state. And there are a lot of endurance athletes who are using a ultra-low carb/ketogenic diet and putting up some great times (more on this below).
For all studies, the area under the curve (AUC) of blood [βHB] was calculated using the trapezium rule. In Study 3, for each of the three drinks, the initial rate of d-βHB appearance was estimated using d-βHB concentrations at baseline and 30 min post-drink, and d-βHB elimination was estimated using the AUC between the post-drink peak (60 min) and trough (180 min) d-βHB concentrations, with a baseline correction to the value at 180 min.
There are numerous benefits that come with living a ketogenic lifestyle. The ketones give your body the much-needed energy and protect you from being affected by different mental conditions such as epilepsy and the Alzheimer’s disease. There is no doubt that ketogenic lifestyle is the surest way of living a healthy and disease-free life. With the tips above, you can get into ketosis in 24 hours effortlessly.
For all studies, the area under the curve (AUC) of blood [βHB] was calculated using the trapezium rule. In Study 3, for each of the three drinks, the initial rate of d-βHB appearance was estimated using d-βHB concentrations at baseline and 30 min post-drink, and d-βHB elimination was estimated using the AUC between the post-drink peak (60 min) and trough (180 min) d-βHB concentrations, with a baseline correction to the value at 180 min.

The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
Emerging evidence supports the therapeutic potential of the ketogenic diet (KD) for a variety of disease states, leading investigators to research methods of harnessing the benefits of nutritional ketosis without the dietary restrictions. The KD has been used as an effective non-pharmacological therapy for pediatric intractable seizures since the 1920s [1–3]. In addition to epilepsy, the ketogenic diet has elicited significant therapeutic effects for weight loss and type-2 diabetes (T2D) [4]. Several studies have shown significant weight loss on a high fat, low carbohydrate diet without significant elevations of serum cholesterol [5–12]. Another study demonstrated the safety and benefits of long-term application of the KD in T2D patients. Patients exhibited significant weight loss, reduction of blood glucose, and improvement of lipid markers after eating a well-formulated KD for 56 weeks [13]. Recently, researchers have begun to investigate the use of the KD as a treatment for acne, polycystic ovary syndrome (PCOS), cancer, amyotrophic lateral sclerosis (ALS), traumatic brain injury (TBI) and Alzheimer’s disease (AD) with promising preliminary results [14–26].
And now, you can take ketone supplements (salts and esters), known as exogenous ketones, without actually restricting anything. According to those promoting this nasty-tasting supplement, that means you can have a brain and body fuelled by ketones, along with all of the supposed health benefits that come with running on fat. Well, don't fall for it.
Ketones are an alternate energy or fuel source for brain and body that our bodies have naturally produced and used for millennia. Ketones have recently leapt to the forefront of health and wellness conversations worldwide as the scientific body of research that seeks to understand their numerous unique properties and profound systemic effects has begun to grow (see below).
For anyone who wants to get a bit more technical, research by Stubbs and colleagues shows that BHB shuts off lipolysis (fat breakdown). With endogenous ketosis there are many other factors that stimulate lipolysis meaning that a kind of balance is reached and lipolysis stays constant. But with exogenous ketosis those factors stimulating ketosis are not present, so the overall effect of the ingested BHB is to decrease lipolysis.
Meanwhile Brinkworth, et al., in their 2009 paper "Long-term Effects of a Very Low-Carbohydrate Diet and a Low-Fat Diet on Mood and Cognitive Function" looked at the effects on ketogenic diet on cognitive function and mood. The study participants ate a ketogenic diet for a year and the researchers found that mood levels decreased when compared to a group eating a high carb/low fat diet. They go on to remark “there was no evidence that the dietary macronutrient composition of LC and LF diets affected cognitive functioning over the long term, as changes in cognitive function were similar for both diets”.
MCT oil is extracted primarily from coconut oil, and derives unique benefits from its shorter fatty acid chain length. Most dietary fat contains 12 carbons in the fatty acid chain, while MCTs are only 6 - 12 carbon chains in length. Shorter chain length allows for easier absorption and rapid conversion to energy in the liver, specifically caprylic (C8) and capric (C10).
Caveat emptor: the following post doesn’t come close to answering most of these questions. I only document my experience with BHB salts (and a non-commercial version at that), but say little to nothing about my experience with BHB esters or AcAc esters. But it will provide you will some context and understanding about what exogenous ketones are, and what they might do for athletic performance. We’ll likely podcast about the questions and topics above and cover other aspects of exogenous ketones in more detail.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×