Should We Use Exogenous Ketones? Ketosis serves a purpose, and it’s probably why we’re able to survive on this planet. Being able to go without eating and use stored fats for energy is a survival tool and possibly far more as we’re now seeing with the keto diet. But it’s probably not a good idea to constantly take exogenous ketones and eat a high carb diet (high blood glucose levels). It’s not natural for the body to have high blood glucose and use ketones. This is a personal opinion, so 
Anti-cancer potential: Recent research suggests that ketogenic diets can blunt malignant tumor growth.[5] This is due to the fact cancer cells can’t metabolize ketones effectively to nourish their growth and replication. Astonishingly, one study found that supplementing with BHB salts increases odds of survival in mice with systemic cancer by up to 70% in comparison to mice who didn’t receive exogenous ketones.[6]
To determine the reason for the differences in blood d-βHB concentration, the KE and KS drinks were analyzed for enantiomeric purity. The KE contained >99% of the d-isoform, whereas ~50% of the KS βHB was the l-isoform (Figure ​(Figure1D).1D). Plasma samples from participants who consumed the high dose KS drink (n = 5) were analyzed to reveal higher l-βHB than d-βHB, the total βHB Cmax being 3.4 ± 0.2 mM (Figure ​(Figure1E),1E), with a total βHB AUC of 549 ± 19 mmol.min. After 4 h, plasma l-βHB remained elevated at 1.9 ± 0.2 mM; differences in urinary excretion of the two isoforms could not explain this observation as both d- and l-βHB were excreted in proportion to their blood AUCs (Figure ​(Figure1F).1F). Therefore, in order to determine the time required for l-βHB elimination, a follow-up experiment was undertaken in which subjects (n = 5) consumed 3.2 mmol.kg−1 of βHB as KE and KS with hourly blood and breath sample collection up to 4 h, plus additional samples at 8 h and 24 h post-drink. l-βHB was found to be 1.1 ± 0.1 mM at 4 h, and 0.7 ± 0.2 mM after 8 h, but undetectable after 24 h (Figure 1G). Low amounts of d-βHB (0.3 ± 0.1 mM) were present at 24 h, presumably due to endogenous production. Both ketone drinks significantly increased breath acetone concentration, but at a slower rate than blood d-βHB, reaching a peak after 3 h that was twice as high following the KE (87 ± 9 ppm) than the KS (44 ± 10 ppm), suggesting that d-βHB was readily converted to acetone, but l-βHB was not (p < 0.005, Figure ​Figure1H1H).
I interviewed Dr. Brianna Stubbs, a ketone researcher with a Ph.D. in Metabolic Physiology from the University of Oxford who is now Research Lead at HVMN, specializing in developing ketone esters. She told me that in terms of science on the ketone salts and their effect on physical performance, one of the most-cited benefits of ketone salts, the scientific studies that have been done show at best no effect on physical performance and that, currently, there is no peer-reviewed scientific research on the ketone salt products on the market.
Some think so because higher ketone levels imply increased fuel for the brain and heart (that prefer ketones), and increased protection against inflammation and oxidation. But are the health benefits coming from the ketones themselves, or are they coming from the state you have to put your body in to actually produce them? And if you're kicking yourself out of ketosis by ingesting ketones would you still get the same benefits?
Ketosis supplements made in poor quality have proven to lead to side-effects such as constipation and increased levels of cholesterol and triglycerides in men. Women may also experience amenorrhea or other disruptions to the menstrual cycle. This is why it is essential to know what combination of compounds you are consuming while you are on this very strict diet. The wrong balance can mess with you in the long term and won't give you the results that you are looking for.
Ketone Esters: These are not normally found in the body, but exogenous ketone esters convert into BHB once it is in the body. They are also synthetically (lab) made compounds that link an alcohol to a ketone body, which can then be metabolized by the liver into a ketone. They are like ketone salts on steroids as they have 5-10 time more BHB per serving/maximum daily intake than ketone salts. To date, pure ketone esters have been very expensive to produce and have only been available to researchers, elite athletes (Tour de France cyclists), and the US Department of Defense (people have spent more than $20,000 to have an independent lab produce a single serving!).

You may wonder why we are emphasizing on using these specific oils. Well, this is because the extra virgin oil is an unprocessed form, and contains lauric acid that is antimicrobial in nature and is good for brain health. (This is the same lauric acid that is naturally found in breast milk as well.) Its antibacterial property also indirectly supports the growth of Candida that keep your gut healthy.
Ketones are also a cleaner-burning fuel than carbs. They’re burned for energy in the mitochondria, and fewer free radicals (a highly-reactive, short-lived uncharged molecule) are generated when compared to burning glucose.15 What’s more, ketone molecules themselves cause a decrease in production of free radicals,21,22 while also increasing glutathione–a powerful antioxidant protecting against mitochondrial damage induced by free radicals.23
We demonstrated that therapeutic ketosis could be induced without dietary (calorie or carbohydrate) restriction and that this acute elevation in blood ketones was significantly correlated with a reduction in blood glucose (Figs. 2, ​,33 and ​and4).4). The BMS ketone supplement did not significantly induce blood hyperketonemia or reduced glucose in the rats. The KE supplemented rats trended towards reduced glucose levels; however, the lower dose of this agent did not lower glucose significantly, as reported previously in acute response of mice [59]. MCTs have previously been shown to elicit a slight hypoglycemic effect by enhancing glucose utilization in both diabetic and non-diabetic patients [86–88]. Kashiwaya et al. demonstrated that both blood glucose and blood insulin decreased by approximately 50 % in rats fed a diet where 30 % of calories from starch were replaced with ketone esters for 14 days, suggesting that ketone supplementation increases insulin sensitivity or reduced hepatic glucose output [89]. This ketone-induced hypoglycemic effect has been previously reported in humans with IV infusions of ketone bodies [90, 91]. Recently, Mikkelsen et al. showed that a small increase in βHB concentration decreases glucose production by 14 % in post-absorptive health males [92]. However, this has not been previously reported with any of the oral exogenous ketone supplements we studied. Ketones are an efficient and sufficient energy substrate for the brain, and will therefore prevent side effects of hypoglycemia when blood levels are elevated and the patient is keto-adapted. This was most famously demonstrated by Owen et al. in 1967 wherein keto-adapted patients (starvation induced therapeutic ketosis) were given 20 IU of insulin. The blood glucose of fasted patients dropped to 1–2 mM, but they exhibited no hypoglycemic symptoms due to brain utilization of ketones for energy [93]. Therefore, ketones maintain brain metabolism and are neuroprotective during severe hypoglycemia. The rats in the MCT group had a correlation of blood ketone and glucose levels at week 4, whereas the combination of BMS + MCT produced a significant hypoglycemic correlation both at baseline and at week 4. No hypoglycemic symptoms were observed in the rats during this study. Insulin levels were not measured in this study; however, future ketone supplementation studies should measure the effects of exogenous ketones on insulin sensitivity with a glucose tolerance test. An increase in insulin sensitivity in combination with our observed hypoglycemic effect has potential therapy implications for glycemic control in T2D [40]. Furthermore, it should be noted that the KE metabolizes to both AcAc and βHB in 1:1 ratio [29]. The ketone monitor used in this study only measures βHB as levels of AcAc are more difficult to measure due to spontaneous decarboxylation to acetone; therefore, the total ketone levels (βHB + AcAc) measured were likely higher, specifically for the KE [14]. Interestingly, the 10 g/kg dose produced a delayed blood βHB peak for ketone supplements MCT and BMS + MCT. The higher dose of the ketogenic supplements elevated blood levels more substantially, and thus reached their maximum blood concentration later due to prolonged metabolic clearance. It must be noted that the dosage used in this study does not translate to human patients, since the metabolic physiology of rats is considerably higher. Future studies will be needed to determine optimal dosing for human patients.
Beta-Hydroxybutyrate (BHB) is a ketone body produced by the liver, from fat, for energy when glucose isn’t available. It ultimately becomes the body and brain’s primary source of energy. Since the liver naturally produces BHB during ketosis, the process can take quite some time, often resulting in symptoms of fatigue, hunger (cravings for sugar, a faster energy source), and mental cloudiness. That’s why supplementing BHB on a keto diet can have a profound positive impact.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×