Venous blood samples (2 ml) were obtained during all visits using a 22 G catheter inserted percutaneously into an antecubital vein. The catheter was kept patent using a saline flush following each sample collection. Additionally, during Study 1, arterialized blood from a catheter inserted into a heated hand (Forster et al., 1972) was collected into heparinized blood gas syringes (PICO 100, Radiometer, Copenhagen) from a subset of participants (n = 7) and immediately analyzed for pH and electrolytes using a clinical blood gas analyser (ABL, Radiometer, Copenhagen).


Yes — you read that correctly — 24 hours of intermittent fasting without any resistance training and these subjects were able to preserve more muscle mass than the subjects that ate fewer calories every day without fasting at all. This finding contradicts our common sense, but when we dig deeper into autophagy we can find the mechanism behind this result.

Ketone supplementation did not affect the size of the brain, lungs, kidneys or heart of rats. As previously mentioned, the rats were still growing during the experimental time frame; therefore, organ weights were normalized to body weight to determine if organ weight changed independently to growth. There could be several reasons why ketones influenced liver and spleen weight. The ratio of liver to body weight was significantly higher in the MCT supplemented animals (Fig. 5). MCTs are readily absorbed in the intestinal lumen and transported directly to the liver via hepatic portal circulation. When given a large bolus, such as in this study, the amount of MCTs in the liver will likely exceed the β-oxidation rate, causing the MCTs to be deposited in the liver as fat droplets [94]. The accumulated MCT droplets in the liver could explain the higher liver weight to body weight percentage observed with MCT supplemented rats. Future toxicology and histological studies will be needed to determine the cause of the observed hepatomegaly. It should be emphasized that the dose in this study is not optimized in humans. We speculate that an optimized human dose would be lower and may not cause hepatomegaly or potential fat accumulation. Nutritional ketosis achieved with the KD has been shown to decrease inflammatory markers such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46], which may account for the observed decrease in spleen weight. As previously mentioned, Veech and colleagues demonstrated that exogenous supplementation of 5 mM βHB resulted in a 28 % increase in hydraulic work in the working perfused rat heart and a significant decrease in oxygen consumption [28, 41, 42]. Ketone bodies have been shown to increase cerebral blood flow and perfusion [95]. Also, ketone bodies have been shown to increase ATP synthesis and enhance the efficiency of ATP production [14, 28, 40]. It is possible that sustained ketosis results in enhanced cardiac efficiency and O2 consumption. Even though the size of the heart did not change for any of the ketone supplements, further analysis of tissues harvested from the ketone-supplemented rats will be needed to determine any morphological changes and to understand changes in organ size. It should be noted that the Harlan standard rodent chow 2018 is nutritionally complete and formulated with high-quality ingredients to optimize gestation, lactation, growth, and overall health of the animals. The same cannot be said for the standard American diet (SAD). Therefore, we plan to investigate the effects of ketone supplements administered with the SAD to determine if similar effects will be seen when the micronutrient deficiencies and macronutrient profile mimics what most Americans consume.
Exogenous ketones drinks are growing in popularity as a method to elevate blood ketone concentrations and mimic a ketogenic diet without the need for dietary changes (Ari et al., 2016; Cox et al., 2016; Kesl et al., 2016; Caminhotto et al., 2017; Evans et al., 2017). The present study describes the pharmacokinetic and pharmacodynamics properties of ketone ester and salt drinks in humans at rest, and characterizes the effects of a prior meal, which is pertinent to use as a dietary supplement. The main findings were that KE drinks elevated blood d-βHB > 50% higher than KS drinks, the latter significantly increasing blood l-βHB, which was metabolized more slowly by the body. Both drinks had similar effects on FFA, TG, glucose and electrolyte concentrations, although with disparate effects on pH. A prior meal decreased total blood d-βHB appearance after a KE drink. Finally, either three KE drinks or nasogastric feeding effectively maintained nutritional ketosis over 1 mM for 9 h.

Though research involving ketone supplements is still in the early stages, it seems promising. One study published in February 2018 in Obesity suggests exogenous ketone esters lower hunger hormones and act as appetite suppressors. That can lead to weight loss because “if we don’t feel hungry, gosh, we probably aren’t going to eat like we were,” Griffin says.


Concentrations of plasma non-esterified fatty acids, triacylglycerol, glucose, and insulin following equimolar ketone ester and ketone salt drinks, at two amounts, in subjects (n = 15) at rest. Values are means ± SEM. (A) Plasma FFA. (B) Plasma TG. (C) Plasma glucose. (D) Plasma insulin at baseline and after 30 and 60 min. EH, ketone ester high; EL, ketone ester low; SH, ketone salt high; SL, ketone salt low. *p < 0.05 difference from baseline value.

Ketōnd is an intelligently designed formula containing an industry leading 13,900mg blend of high-powered goBHB™ all packed into a 100% transparent, proprietary blend free formula. Ketōnd is widely known as the most ‘potent’ exogenous ketone supplement available that has been formulated for anyone looking to manage their weight, maximize cognition, or simply feel more energetic in a low carbohydrate environment.
This research is a good reminder to discuss with your doctor before taking any supplements. Given the widespread use of calcium supplements, more research is required before any final conclusions can be drawn. Several ketone companies have tried to avoid the large sodium loads but instead relied on a bump in the calcium content from the BHB ketone salts, seemingly without consideration for the aforementioned results. Calcium BHB will likely absorb slower compared to sodium BHB due to digestion and absorption kinetics.  For those looking to optimize brain uptake of ketones, this probably isn’t the best strategy (as uptake is directly proportional to the levels in the blood).   Be cautious of supplements running from the sodium and chasing the calcium BHB instead, and make sure you factor that into your overall daily needs.

Firstly, in a randomized four-arm cross-over study, blood βHB concentrations were compared following ingestion of equal amounts of βHB as a KE or a KS at two doses by healthy volunteers at rest (Study 1; n = 15). Secondly, in a randomized five-arm cross-over study, inter- and intra-participant repeatability of ketosis was examined following ingestion of identical KE drinks, twice whilst fed and twice whilst fasted. As a control, participants also consumed one isocaloric (1.9 kCal.kg−1) dextrose drink (Study 2; n = 16). Finally, blood d-βHB was measured after equal amounts of KE were given as three drinks (n = 12) or a constant nasogastric (NG) infusion (n = 4) (Study 3; total n = 14) over 9 h.
Ketone Esters: Synthetically-made compounds that link an alcohol to a ketone body, which is metabolised in the liver to a ketone. Ketone esters are used primarily in research for testing their efficacy in elevating ketone body levels (below is a generic structure of a BHB ester). Yet, the first commercial Ketone ester drink will be available in 2018 by HVMN. Research esters are reportedly very unpleasant tasting which HVMN hopes to change.

I’m often asked if it’s necessary to buy and use keto products like urine sticks. They’re small test strips that you dip in urine to see if your body is producing ketones (and therefore indicate if you’ve entered ketosis.) There's very little information on how to know that you are in ketosis other than using these ketones supplements because they are as accurate as can be in determining your current state. Outside of that, you can only guess if you are in it or not by your body's performance.
Concentrations of plasma non-esterified fatty acids, triacylglycerol, glucose, and insulin following equimolar ketone ester and ketone salt drinks, at two amounts, in subjects (n = 15) at rest. Values are means ± SEM. (A) Plasma FFA. (B) Plasma TG. (C) Plasma glucose. (D) Plasma insulin at baseline and after 30 and 60 min. EH, ketone ester high; EL, ketone ester low; SH, ketone salt high; SL, ketone salt low. *p < 0.05 difference from baseline value.
It's also a smart idea to start slowly with this supplement. We can thank Dave Asprey for the term “disaster pants” which has been used by those who try MCT oil at too high a dose when they first start using it. There is a chance that you can experience the same unpleasant gastrointestinal effect with exogenous ketones if you start with too high a dose, or if you maintain a higher carbohydrate diet while using this supplement. Used in appropriate doses, it gets absorbed through your stomach into your liver, then sent out to the rest of your body.
I have Type 2 Diabetes. I have bought a product that has Beta Hydroxybutyrate in it. Is it dangerous for me to take it whereas I am a Type 2 diabetic. Can it cause me to go into Diabetic ketoacidosis which is very dangerous for a diabetic even deadly. I have been trying to find an answer to my question and your sight seems to have the best insight on Beta Hydroxybutyrate . I bought the product without knowing it had Beta Hydroxybutyrate in it and have not tried it out of fear that it will cause me to go into Diabetic ketoacidosis. Other people I know have taken it and lost weight and I really want to take it but I am afraid. Just so you know it is on a patch with other elements in it. Please help me I look forward to your answer
Effects of ketone supplementation on triglycerides and lipoproteins: Ketone supplementation causes little change in triglycerides and lipoproteins over a 4-week study. Graphs show concentrations at 4-weeks of total cholesterol (a), Triglycerides (b), LDL (c), and HDL (d). MCT supplemented rats had signfiicantly reduced concentration of HDL blood levels compared to control (p < 0.001) (b). One-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)
Hey Staci, great to hear you’re getting back into it! To answer your question, it really depends on the individual but there are definitely things you can do to get back into ketosis faster – working out to deplete your glycogen stores or implementing intermittent fasting into your regimen – these are 2 common ways that should kick start you back in the right direction!
There’s also the issue of supplement safety in general. All supplements—whether you’re talking about vitamins, minerals, herbs, or other nutritional mixes—are only loosely regulated. “We know that there is contamination of supplements here in the U.S., often from products that are manufactured abroad,” Palumbo says. In that case, “the same concerns apply to this as for any other supplement.”
The ‘carb-sparing’ effect from BHB suppresses the break down of muscle glycogen. This leads to lower lactate levels. When increasing exercise intensity, fat oxidation (burning) reaches a limit. At that point the muscle burns carbohydrates as fuel. But when consuming Ketone esters, the body does not make this switch. This suggests Ketones are being used instead. 11

Beta-hydroxybutyrate (BHB): Nutrition strategies that rely on carbohydrates always leave us needing more food. On the other hand, the ketogenic diet relies on and taps into your body’s stored fat for longer, more stable energy with no bonking. Many keto-lovers adopt this lifestyle because they love the mental clarity, focus, and productivity that they experience while in ketosis. Whether you’re full-time keto or not, our Perfect Keto is designed to support ultimate mental performance.
Beta hydroxybutyrate floats around in your blood, and importantly, can cross different barriers to be able to be turned into energy at all times. One of the most important areas where this happens is in the brain. The blood-brain barrier (BBB) is usually a very tightly regulated interface that doesn’t allow the transfer of many molecules, but since BHB is such a rock star and so hydrophilic, your brain knows to let it in so it can bring energy to the party at any time. This is one of the main reasons why increased levels of ketosis lead to improved mental clarity, focus and reduction in neurodegenerative diseases.
Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB.
Ketosis is a natural process that more and more people are flocking to these days in an effort to stay fit and healthy. Studies show that it has a host of health benefits and plays a key role in maintaining or changing your physical appearance by helping you lose weight. This is due to the fact that when the body is in a state of ketosis, it converts fat into compounds known as ketones, effectively turning fat into a source of energy.
Intellectual property covering uses of dietary ketone and ketone ester supplementation is owned by BTG Ltd., the University of Oxford, the National Institute of Health and TΔS Ltd. Should royalties ever accrue from these patents, KC and PC, as inventors, will receive a share of the royalties under the terms prescribed by the University of Oxford. KC is a director of TΔS Ltd., a company spun out of the University of Oxford to develop and commercialize products based on the science of ketone bodies in human nutrition. At the time of data collection and manuscript preparation, BS was an employee of TΔS Ltd., funded by the Royal Commission for the Exhibition of 1851. SH is an employee of NTT DOCOMO, Inc. (Japan). The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Participants refrained from alcohol and caffeine for 24 h prior to each visit AND were asked to consume a similar meal the night before each visit. All studies were carried out at the University of Oxford Human Physiology Laboratories and started at 0800 h following an overnight (>8 h) fast, with a minimum of 72 h between visits. Visit order was randomized prior to commencement by an administrative investigator using a pseudo-random number generator to produce a list of combinations of visit order, which were then allocated based on order of enrolment by a different investigator.
Ketogenic diets have been successfully used to treat diseases that have an underlying metabolic component, effectively decreasing seizures in recalcitrant pediatric epilepsy (Kossoff et al., 2003), lowering blood glucose concentrations in type 2 diabetes mellitus (Feinman et al., 2015) and aiding weight-loss (Bueno et al., 2013). Emerging evidence supports several clinical uses of ketogenic diets, for example in neurodegenerative diseases (Vanitallie et al., 2005), specific genetic disorders of metabolism (Veech, 2004) and as an adjunct to cancer therapy (Nebeling et al., 1995). Ketone bodies themselves may underlie the efficacy of the ketogenic diet, either through their role as a respiratory fuel, by altering the use of carbohydrate, protein and lipids (Thompson and Wu, 1991; Cox et al., 2016), or through other extra- and intracellular signaling effects (Newman and Verdin, 2014). Furthermore, ketone metabolism may offer a strategy to improve endurance performance and recovery from exercise (Cox et al., 2016; Evans et al., 2017; Holdsworth et al., 2017; Vandoorne et al., 2017). However, achieving compliance to a ketogenic diet can be difficult for both patients and athletes and may have undesirable side effects, such as gastro-intestinal upset (Cai et al., 2017), dyslipidemia (Kwiterovich et al., 2003) or decreased exercise “efficiency” (Edwards et al., 2011; Burke et al., 2016). Hence, alternative methods to raise blood ketone concentrations have been sought to provide the benefits of a ketogenic diet with no other dietary changes.
Ketostix are very unreliable. There are many factors which can alter results such as hydration level, if you’ve worked out recently and the amount of unused ketones in your body to name just a few. Never rely of Ketostix to determine whether you are in ketosis or not. The Precision Xtra blood ketone monitor is the gold standard for testing for ketones in your body. After following a ketogenic diet for a while, you should be able to tell if you are in ketosis or not by the way you feel.
The Zenwise Keto Life BHB Salt uses a custom calcium, magnesium and sodium ketone complex to help access ketones for fuel without the low carb diet or fasting. This product is another all-natural option that goes as far as using turmeric for its added coloring. It is a proven product with hundreds of happy customers. They seem to have a strong grasp on the lemonade side of the exogenous market with their Raspberry Lemonade and Wild Limeade flavor choices.
The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
On day 29, rats were sacrificed via deep isoflurane anesthesia, exsanguination by cardiac puncture, and decapitation 4–8 h after intragastric gavage, which correlated to the time range where the most significantly elevated blood βHB levels were observed. Brain, lungs, liver, kidneys, spleen and heart were harvested, weighed (AWS-1000 1 kg portable digital scale (AWS, Charleston, SC)), and flash-frozen in liquid nitrogen or preserved in 4 % paraformaldehyde for future analysis.

Instead of being bound to a mineral (like ketone salts), the ketone molecule (BHB or AcAc) is bound to a ketone precursor (e.g. butanediol or glycerol) via an ester bond. While there aren't as many esters on the market as salts, there is still some variance–especially when looking at the ketone molecule in these products. Before selecting the best one for you, it's important to gather all the necessary information to make your decision.
A meal high in carbohydrate and calories significantly decreased peak d-βHB by ~ 1 mM (Figure ​(Figure4A)4A) and reduced the d-βHB AUC by 27% (p < 0.001, Figure ​Figure4B).4B). There were no significant changes in d-βHB Tmax (fed = 73 ± 6 min vs. fasted 66 ± 4 min). Despite the differences in d-βHB kinetics after the meal, there were no effects of food on urinary ketone excretion (Figure ​(Figure4C),4C), plasma AcAc (Figure ​(Figure4D)4D) or breath acetone (Figure ​(Figure4E)4E) following KE ingestion. Plasma AcAc kinetics followed a similar time course to d-βHB, with the ratio of blood d-βHB: AcAc being 6:1 when KE drinks were consumed whilst fasted, and 4:1 following the meal. As observed in Study 1, breath acetone concentrations rose more slowly than blood ketone concentrations, reaching a plateau at 150 min and remaining elevated for at least 4 h (Figure ​(Figure4E4E).
When the results for the supplement and the placebo were within 0.2 (either % or mmol/L) of each other, we classed the supplement as neither “better” nor “worse” than the placebo. We gave a “winning brand” sticker to the brand that scored highest against the placebo for each marker, but not for physical performance, since none of the supplements performed better than the placebo for that marker.

There are several ways to approach the “intermittent” part of food restriction. One of the most common is limiting the window in which food is consumed to about eight hours a day. Another is fasting for a full 24 hours once a week, or once a month. Fasting beyond three days can be stressful on the body and should be done with medical advice and supervision.
The protocols carried out in these studies were approved by the the South West Frenchay NHS REC (15/SW/0244) (Study 1) and London Queen's Square REC (14/LO/0288) (Study 2 and 3). The studies were carried out in accordance with the recommendations of the Declaration of Helsinki, apart from pre-registration in a database. All subjects gave written informed consent in accordance with the Declaration of Helsinki.
So if you really want to jump start ketosis, do what the prehistoric humans did; don’t eat for 3 to 5 days. Keep the water bottle and multivitamins close and go on a strict fast. It might seem extreme and to a degree it is, but starving yourself will put you into ketosis. No ifs, ands, or buts about it. And it will cause you to lapse into a ketogenic state faster than if you tried to do so by manipulating the foods you eat (replacing carbs with fats). Once starvation has caused your body to transition to a ketogenic state, you can begin to introduce your low carb, high fat keto-friendly foods.
Ketoacidosis is driven by a lack of insulin in the body.  Without insulin, blood sugar rises to high levels and stored fat streams from fat cells.  This excess amount of fat metabolism results in the production of abnormal quantities of ketones. The combination of high blood sugar and high ketone levels can upset the normal acid/base balance in the blood and become dangerous.  In order to reach a state of ketoacidosis, insulin levels must be so low that the regulation of blood sugar and fatty acid flow is impaired.
The effects of ketone drinks on endogenous insulin secretion are unclear. Whilst the small increase in plasma insulin after KE and KS drinks may have been due to the small quantity of dextrose in the diluent, it has been proposed that ketones could potentiate or even stimulate insulin secretion. Isolated pancreatic islets secreted insulin when stimulated by ketones at glucose concentrations of >5 mM (Biden and Taylor, 1983), and small amounts of insulin are secreted in vivo following exposure to exogenous ketones in animals (Madison et al., 1964; Miles et al., 1981). In response to an intra-venous 10 mM glucose clamp, ketone ester drinks increased glucose uptake and plasma insulin (Holdsworth et al., 2017). The increases in insulin with ketone drinks taken whilst fasted were small compared to the increases seen when the ketone ester drink was consumed with a meal and with consumption of a dextrose drink. Furthermore, the lack of difference in peak plasma insulin between the two latter conditions indicates that nutritional ketosis did not inhibit or increase normal carbohydrate induced insulin production.

It might sound absolutely crazy to go that long without food. Especially when you consider traditional diets that recommend eating 3-5 small meals each day, starting with breakfast – the “most important” meal of the day. But if you think back to hunter gatherer times, human beings didn’t always have food accessible to us. Farming and agriculture hadn’t existed so our first meal each day would vary quite vastly. If you think about the word itself, ‘breakfast’ means to break-fast. We didn’t have a set time where we would consume our first meal – it was dependent on accessibility. So if you’re wondering how you’re going to survive without going for food for 16 hours, the answer is straight forward – you can! Let’s simplify this and break down what this may potentially look like.
Once the body is able to generate energy with the help of exogenous ketones which are present in the bloodstream, it would start looking for other sources of ketones. This would encourage the body to tap into the vast reserve of fat which is accumulated in the body. Thus, the process of ketosis is accelerated when you consume extra exogenous ketones. This also leads to quicker weight loss and the body entering ketosis faster.
It's a common misconception among those who are trying to lose weight that fat is dangerous, but this is not the case at all. You will need to rely on healthy sources of fat to reach ketosis, and this can be achieved by choosing the right type of food. Go with those that contain butter, olive oil, coconut oil and avocado oil, among others. Opt for oils that are not heavily processed so you can get the most benefits out of them.
Hi all…thanks for your articles and info. I am currently on a paleo diet, but want to lose more weight and bring it up a notch w/ ketogenic diet and be in ketosis. Not sure which product is best? Do you take the MCT oil and also a ketone powder. I know it may be difficult at first, but I am up for the challenge as we start the new year and would like to loose 40 lbs by May/June. Please advise as to what products are best so I can purchase. THANKS

I don’t recommend that you go straight for a 1-2 day fast, but begin by restricting yourself to certain eating windows. Typically people restrict themselves to the hours of 5pm – 11pm. People often refer to their fasting windows by numbers: 19/5 or 21/3, for example, means 19 hours of fasting and 5 hours eating or 21 hours fasting and 3 hours eating, respectively.
I don’t recommend that you go straight for a 1-2 day fast, but begin by restricting yourself to certain eating windows. Typically people restrict themselves to the hours of 5pm – 11pm. People often refer to their fasting windows by numbers: 19/5 or 21/3, for example, means 19 hours of fasting and 5 hours eating or 21 hours fasting and 3 hours eating, respectively.
There’s some support that exogenous ketones can be helpful for people already dutifully following the keto diet — but research has been limited. One thing we know for sure: These aren’t a get-thin-quick solution. “I think people are drawn to a quick, easy fix, kind of a magic bullet supplement, and it’s not that this won’t contribute to weight loss, but it’s not that magic bullet,” Griffin says.

Long-Term Effects of a Ketogenic Diet in Obese Patients – The present study shows the beneficial effects of a long-term ketogenic diet. It significantly reduced the body weight and body mass index of the patients. Furthermore, it decreased the level of triglycerides, LDL cholesterol and blood glucose, and increased the level of HDL cholesterol. Administering a ketogenic diet for a relatively longer period of time did not produce any significant side effects in the patients. Therefore, the present study confirms that it is safe to use a ketogenic diet for a longer period of time than previously demonstrated.(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716748/)

The concentrations of blood d-βHB after KE drinks were highly repeatable whether consumed whilst fasted or fed (Figures 4F,G). The d-βHB Cmax values ranged from 1.3 to 3.5 mM when fed and 2.3 to 4.7 mM when fasted. There was no significant effect of visit order on d-βHB kinetics, with the maximal difference in d-βHB Cmax reached by one individual being 1.2 mM when fed and 1.9 mM when fasted. Approximately 61% of the variation in the data was attributable to feeding (fed vs. fasted), <1% to visit order, 16% to inter-participant variability, and the residual 24% variability due to non-specific random effects.
Another factor to consider is that in nutritional ketosis the liver makes a steady supply of ketones and continuously releases them into the circulation. In contrast, most ketone supplement protocols involve bolus intakes that don’t mimic the endogenous release pattern. The extent to which this impacts metabolic and signaling responses across different tissues remains unclear.
Humans in the hunter-gatherer era survived thanks to metabolic flexibility — the body’s ability to use different fuels for energy depending on the nutrients available. This adaptation was vital during a time when the source, quantity, and frequency of food was uncertain[*]. Most of the time, people were fasting, so their bodies ran on ketones, not glucose.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×