Getting enough sleep not only helps in the production of growth hormones vital for muscle growth, but it plays a particular role as already discussed. If you’re intermittently fasting then sleep is crucial is helping you sustain the fast. 6-10 hours of your day will be dedicated to sleep, helping you to reboot and not think about food during this time. That means less time for you to actually be fasting! Stress is another factor – if we don’t get enough sleep, we’ll tend to feel more stress and agitation throughout the day. Ensuring that we’re well rested plays a huge part in keeping down cortisol levels so that are insulin and blood sugar levels don’t spike.
Beta-hydroxybutyrate (BHB): Nutrition strategies that rely on carbohydrates always leave us needing more food. On the other hand, the ketogenic diet relies on and taps into your body’s stored fat for longer, more stable energy with no bonking. Many keto-lovers adopt this lifestyle because they love the mental clarity, focus, and productivity that they experience while in ketosis. Whether you’re full-time keto or not, our Perfect Keto is designed to support ultimate mental performance.
Exogenous ketones are created in a lab to accelerate both physical and mental performance. These ketone drinks were actually used in pro cycling races back in 2015, trading at prices that would make using your kidney as a bartering tool seem like a cut price deal. Fortunately, they’ve now come down in cost and are used often in between meals as a way of blackmailing your body into getting into ketosis way faster.
Divided attention involves processing multiple streams of information. The game involves observing a pond full of koi fish swimming around, and tapping each fish only once to feed it a pellet without feeding any fish previously fed. Each level adds more fish with increasing speed and redirection. It’s similar to pretending to be an air-traffic controller who must keep track of every plane on their radar.
Blood glucose concentrations are decreased during both exogenous and endogenous ketosis, although by different mechanisms. During endogenous ketosis, dietary carbohydrate deficit is the underlying cause of low blood glucose, along with reduced hepatic gluconeogenesis and increased ketone production (Cahill et al., 1966). With exogenous ketosis, carbohydrate stores are plentiful, yet ketones appear to lower blood glucose through limiting hepatic gluconeogenesis and increasing peripheral glucose uptake (Mikkelsen et al., 2015). One clinical use of the ketogenic diet is to improve blood glucose control, yet the elevated blood FFA may increase the risk of heart failure (Holloway et al., 2009). Thus, the ability of exogenous ketones to lower blood glucose without elevating blood FFA concentrations could deliver the desired effect of the diet, whilst also decreasing a potential risk.
Administration of ketone supplementation significantly reduced blood glucose over the course of the study (Fig. 3a, b). MCT (5 g/kg) decreased blood glucose compared to control within 30 min which was sustained for 8 h at baseline and at week 1. MCT (10 g/kg) likewise decreased blood glucose within 30 min and lasted through the 12 h time point during weeks 2, 3, and 4. BMS + MCT (5 g/kg) lowered blood glucose compared to control from hours 1–8 only at week 1. BMS + MCT (10 g/kg) lowered blood glucose compared to control within 30 min and remained low through the 12 h time point at weeks 2, 3, and 4. Rats supplemented with BMS had lower blood glucose compared to control at 12 h in week 4 (10) (Fig. 3a). Administration of BD did not significantly change blood glucose levels at any time point during the 4-week study. KE (5 g/kg) significantly lowered blood glucose levels at 30 min for week 1, 2, 3, and 4 and was sustained through 1 h at weeks 2–4 and sustained to 4 h at week 3. (Fig. 3b).
Some people follow more of an Ultra Low Carb diet approach. This is generally around 50g or less of carbs per day. A ULC is more supportive of reaching a ketogenic state, but again total carbs are not the only variable when it comes to reaching ketosis (other factors such as types of carbs, protein consumption, portion size, ingredients, supplements used etc. all play a role and will be covered in more detail below). 
Recent studies suggest that many of the benefits of the KD are due to the effects of ketone body metabolism. Interestingly, in studies on T2D patients, improved glycemic control, improved lipid markers, and retraction of insulin and other medications occurred before weight loss became significant. Both βHB and AcAc have been shown to decrease mitochondrial reactive oxygen species (ROS) production [36–39]. Veech et al. have summarized the potential therapeutic uses for ketone bodies [28, 40]. They have demonstrated that exogenous ketones favorably alter mitochondrial bioenergetics to reduce the mitochondrial NAD couple, oxidize the co-enzyme Q, and increase the ΔG’ (free enthalpy) of ATP hydrolysis [41]. Ketone bodies have been shown to increase the hydraulic efficiency of the heart by 28 %, simultaneously decreasing oxygen consumption while increasing ATP production [42]. Thus, elevated ketone bodies increase metabolic efficiency and as a consequence, reduce superoxide production and increase reduced glutathione [28]. Sullivan et al. demonstrated that mice fed a KD for 10–12 days showed increased hippocampal uncoupling proteins, indicative of decreased mitochondrial-produced ROS [43]. Bough et al. showed an increase of mitochondrial biogenesis in rats maintained on a KD for 4–6 weeks [44, 45]. Recently, Shimazu et al. reported that βHB is an exogenous and specific inhibitor of class I histone deacetylases (HDACs), which confers protection against oxidative stress [38]. Ketone bodies have also been shown to suppress inflammation by decreasing the inflammatory markers TNF-a, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46, 47]. Therefore, it is thought that ketone bodies themselves confer many of the benefits associated with the KD.

I heard a rep from Perfect Keto on a podcast and your Exogenous Ketones. I ordered and received it the other day. I see from this article that I should not do a full scoop at once, but break it up in a day. Good to know. I had about a half scoop before I worked out this morning and could tell I had more energy. Loved that. Just curious….any ideas how long it will take me to get back into ketosis and fat burning?? (I know it depends on what I eat, but a general idea that I promise not to hold you too! (I’m actually missing having ‘keto breath!)
Given that blood βHB after identical ketone drinks can be affected by factors such as food or exercise (Cox et al., 2016), the accuracy of tools for non-invasive monitoring of ketosis should be investigated. Breath acetone and urinary ketone measurements provide methods to approximate blood ketosis without repeated blood sampling (Martin and Wick, 1943; Taboulet et al., 2007). However, breath acetone did not change as rapidly as blood βHB following KE and KS drinks. Acetone is a fat-soluble molecule, so may have been sequestered into lipids before being slowly released, resulting in the differences observed here. Similarly, significant differences in blood d-βHB between study conditions were not reflected in the urinary d-βHB elimination. As the amount of d-βHB excreted in the urine (≈0.1–0.5 g) represented ~1.5% of the total consumed (≈23.7 g), it appears that the major fate of exogenous d-βHB was oxidation in peripheral tissues. These results suggest that neither breath acetone nor urinary ketone measurements accurately reflect the rapid changes in blood ketone concentrations after ketone drinks, and that blood measurement should be the preferred method to quantitatively describe ketosis. That said, it should be noted that although commercial handheld monitors are the most practical and widely available tool for measuring blood ketones, they can overestimate blood D-βHB compared to laboratory measures (Guimont et al., 2015) and these monitors do not measure L-βHB and so may not provide accurate total blood ketone concentrations, especially if a racemic ketone salt has been consumed.

When the results for the supplement and the placebo were within 0.2 (either % or mmol/L) of each other, we classed the supplement as neither “better” nor “worse” than the placebo. We gave a “winning brand” sticker to the brand that scored highest against the placebo for each marker, but not for physical performance, since none of the supplements performed better than the placebo for that marker.


I wrote this post at about the same time Germany won the World Cup in Rio de Janeiro in 2014. There’s been a lot of moving and shaking in the world of exogenous ketones since then, not to mention soccer. Looking back on my post, I still consider it relevant in terms of what exogenous ketones possibly can (and cannot) do for performance. In this case, to see if exogenous ketone esters provide me a “boost” by allowing me to do the same amount of work while expending less energy (and work at a relatively lower VO2) compared to no supplementation.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×