Now onto the best ketone supplements. All of these 5 are great products with good customer experiences and reviews. The list contains 3 MCT oil powders and 2 BHB salts. Since it’s just 5 products, there’s no room for bad quality. If you see a lower rating it may be due to price/value, the taste or perhaps a lack of third-party inspection certificates.

Great question. So if you are already in nutritional ketosis from your diet, exogenous ketones would still help raise ketone (energy) levels when you want that (maybe for focus at work or energy at the gym. They also help get you back into ketosis after cheat meals and skip the “keto flu” which is the period when your body is using up stored glycogen.
I eat one meal a day during a one-hour window and fast 23 or more hours every day. I want to use your ketones to get back into ketosis faster after that meal. Will that work? I am confused, because say at the end of my hour eating window I drink your ketones, sure there are lots of ketones suddenly in my body but I also have a big meal in my stomach. My body has to digest and use that food energy, so how do exogenous ketones help me in that case?

Although most of the research has been done utilizing ketone esters, ketone salt supplementation has the potential to provide additional benefits through the extra electrolytes/nutrients that are required to make the ketones. While ketone esters are expensive due to the manufacturing process involved in making them, ketone salts might be a more convenient option for both inducing a state of ketosis and elevating blood ketone levels for various reasons we will discuss in another article.

The concentrations of blood d-βHB after KE drinks were highly repeatable whether consumed whilst fasted or fed (Figures 4F,G). The d-βHB Cmax values ranged from 1.3 to 3.5 mM when fed and 2.3 to 4.7 mM when fasted. There was no significant effect of visit order on d-βHB kinetics, with the maximal difference in d-βHB Cmax reached by one individual being 1.2 mM when fed and 1.9 mM when fasted. Approximately 61% of the variation in the data was attributable to feeding (fed vs. fasted), <1% to visit order, 16% to inter-participant variability, and the residual 24% variability due to non-specific random effects.

In a subset of participants (n = 7) the effect of 3.2 mmol.kg−1 of βHB as KE and KS on blood pH and electrolytes after ketone drinks was investigated. Blood d-βHB kinetics were similar to those in the initial experiment (Figure ​(Figure3A).3A). After 60 min, blood pH declined from 7.41 to 7.31 following a KE drink (p < 0.001, Figure ​Figure3B).3B). Bicarbonate fell significantly from 23.6 ± 0.7 to 17.0 ± 0.8 mM following KE drinks (p < 0.001), but remained within the normal range (Figure 3C). Both ketone drinks significantly decreased blood potassium concentrations by 0.7 mM (both drinks p < 0.05, Figure 3D) and increased sodium and chloride concentrations (Sodium: both drinks p < 0.05, Chloride: KE = p < 0.05, KS = p < 0.005, Figures 3E,F).

Beta hydroxybutyrate floats around in your blood, and importantly, can cross different barriers to be able to be turned into energy at all times. One of the most important areas where this happens is in the brain. The blood-brain barrier (BBB) is usually a very tightly regulated interface that doesn’t allow the transfer of many molecules, but since BHB is such a rock star and so hydrophilic, your brain knows to let it in so it can bring energy to the party at any time. This is one of the main reasons why increased levels of ketosis lead to improved mental clarity, focus and reduction in neurodegenerative diseases.


Disclaimer: While we work to ensure that product information is correct, on occasion manufacturers may alter their ingredient lists. Actual product packaging and materials may contain more and/or different information than that shown on our Web site. We recommend that you do not solely rely on the information presented and that you always read labels, warnings, and directions before using or consuming a product. For additional information about a product, please contact the manufacturer. Content on this site is for reference purposes and is not intended to substitute for advice given by a physician, pharmacist, or other licensed health-care professional. You should not use this information as self-diagnosis or for treating a health problem or disease. Contact your health-care provider immediately if you suspect that you have a medical problem. Information and statements regarding dietary supplements have not been evaluated by the Food and Drug Administration and are not intended to diagnose, treat, cure, or prevent any disease or health condition. Amazon.com assumes no liability for inaccuracies or misstatements about products.

My two cents: I wouldn’t take ketone supps if not on some sort of low(ish) carb diet because the idea of high levels of BOTH fuels (ie, ketones AND glucose) doesn’t seem physiologically appropriate… more like a recipe for disaster, and by “disaster,” I mean “out-of-control production of Reactive Oxygen Species” — this might not matter if you’re an athlete looking for a quick performance boost, because the fuels are going to be cleared rather quickly… not so much if you’re a desk jockey.
Hypoglycemia: why not to be concerned – Taking exogenous ketones can drive blood glucose levels quite low, but you are not likely to feel the typical symptoms of hypoglycemia. This is because when ketone levels are high enough, they dominate as fuel in the brain; hence, you will feel just fine despite having low blood glucose. A highly-cited study by George Cahill, found elevated ketone levels could protect fasted participants when they were administered insulin to induce hypoglycemia.

Effects of ketone supplementation on blood βHB. a, b Blood βHB levels at times 0, 0.5, 1, 4, 8, and 12 h post intragastric gavage for ketone supplements tested. a BMS + MCT and MCT supplementation rapidly elevated and sustained significant βHB elevation compared to controls for the duration of the 4-week dose escalation study. BMS did not significantly elevate βHB at any time point tested compared to controls. b BD and KE supplements, maintained at 5 g/kg, significantly elevated βHB levels for the duration of the 4-week study. Two-Way ANOVA with Tukey’s post hoc test, results considered significant if p < 0.05. Error bars represent mean (SD)

Emerging evidence supports the therapeutic potential of the ketogenic diet (KD) for a variety of disease states, leading investigators to research methods of harnessing the benefits of nutritional ketosis without the dietary restrictions. The KD has been used as an effective non-pharmacological therapy for pediatric intractable seizures since the 1920s [1–3]. In addition to epilepsy, the ketogenic diet has elicited significant therapeutic effects for weight loss and type-2 diabetes (T2D) [4]. Several studies have shown significant weight loss on a high fat, low carbohydrate diet without significant elevations of serum cholesterol [5–12]. Another study demonstrated the safety and benefits of long-term application of the KD in T2D patients. Patients exhibited significant weight loss, reduction of blood glucose, and improvement of lipid markers after eating a well-formulated KD for 56 weeks [13]. Recently, researchers have begun to investigate the use of the KD as a treatment for acne, polycystic ovary syndrome (PCOS), cancer, amyotrophic lateral sclerosis (ALS), traumatic brain injury (TBI) and Alzheimer’s disease (AD) with promising preliminary results [14–26].


Blood glucose concentrations are decreased during both exogenous and endogenous ketosis, although by different mechanisms. During endogenous ketosis, dietary carbohydrate deficit is the underlying cause of low blood glucose, along with reduced hepatic gluconeogenesis and increased ketone production (Cahill et al., 1966). With exogenous ketosis, carbohydrate stores are plentiful, yet ketones appear to lower blood glucose through limiting hepatic gluconeogenesis and increasing peripheral glucose uptake (Mikkelsen et al., 2015). One clinical use of the ketogenic diet is to improve blood glucose control, yet the elevated blood FFA may increase the risk of heart failure (Holloway et al., 2009). Thus, the ability of exogenous ketones to lower blood glucose without elevating blood FFA concentrations could deliver the desired effect of the diet, whilst also decreasing a potential risk.
Exogenous ketones are not a shortcut to nutritional ketosis, but they do give your body a break from full-time carb usage. They are a tool you can use to get into ketosis if your lifestyle makes it too difficult to do so without them. And they’re also a good way to get an increased edge for those who are very on top of their nutrition and performance.

I’m often asked if it’s necessary to buy and use keto products like urine sticks. They’re small test strips that you dip in urine to see if your body is producing ketones (and therefore indicate if you’ve entered ketosis.) There's very little information on how to know that you are in ketosis other than using these ketones supplements because they are as accurate as can be in determining your current state. Outside of that, you can only guess if you are in it or not by your body's performance.
As seen in this exercise, glucose tends to fall quite precipitously following exogenous ketone ingestions. Without exception, every time I ingested these compounds (which I’ve probably done a total of 25 to 30 times), my glucose would fall, sometimes as low as 3 mM (just below 60 mg/dL). Despite this, I never felt symptomatic from hypoglycemia. Richard Veech (NIH) one of the pioneers of exogenous ketones, has suggested this phenomenon is the result of the ketones activating pyruvate dehydogenase (PDH), which enhances insulin-mediated glucose uptake. (At some point I will also write a post on Alzheimer’s disease, which almost always involves sluggish PDH activity —in animal models acute bolus of insulin transiently improves symptoms and administration of exogenous ketones does the same, even without glucose.)
Administration of ketone supplementation significantly reduced blood glucose over the course of the study (Fig. 3a, b). MCT (5 g/kg) decreased blood glucose compared to control within 30 min which was sustained for 8 h at baseline and at week 1. MCT (10 g/kg) likewise decreased blood glucose within 30 min and lasted through the 12 h time point during weeks 2, 3, and 4. BMS + MCT (5 g/kg) lowered blood glucose compared to control from hours 1–8 only at week 1. BMS + MCT (10 g/kg) lowered blood glucose compared to control within 30 min and remained low through the 12 h time point at weeks 2, 3, and 4. Rats supplemented with BMS had lower blood glucose compared to control at 12 h in week 4 (10) (Fig. 3a). Administration of BD did not significantly change blood glucose levels at any time point during the 4-week study. KE (5 g/kg) significantly lowered blood glucose levels at 30 min for week 1, 2, 3, and 4 and was sustained through 1 h at weeks 2–4 and sustained to 4 h at week 3. (Fig. 3b).
At the same time, research suggests that getting as much of your calcium from your diet, rather than supplements is a good idea. For instance, there is some evidence that the calcium intake from food is better for bone mineral density than the same calcium intake from supplements[17]. Foods that are high in calcium include dairy, leafy green vegetables, fish with edible bones, tofu made with calcium sulfate, and calcium-fortified foods and beverages.
The concentrations of blood d-βHB after KE drinks were highly repeatable whether consumed whilst fasted or fed (Figures 4F,G). The d-βHB Cmax values ranged from 1.3 to 3.5 mM when fed and 2.3 to 4.7 mM when fasted. There was no significant effect of visit order on d-βHB kinetics, with the maximal difference in d-βHB Cmax reached by one individual being 1.2 mM when fed and 1.9 mM when fasted. Approximately 61% of the variation in the data was attributable to feeding (fed vs. fasted), <1% to visit order, 16% to inter-participant variability, and the residual 24% variability due to non-specific random effects.
Blood, urine, plasma, and breath ketone concentrations following mole-matched ketone ester or isocaloric dextrose drinks in fed and fasted subjects (n = 16) at rest. Data from both of the two study visits in each condition (fed and fasted) completed by an individual are included in the analysis. Values are means ± SEM. (A) Blood d-βHB. (B) AUC of blood d-βHB. (C) Urine d-βHB excretion. (D) Plasma acetoacetate (AcAc). (E) Measured breath acetone (ppm = parts per million). (F,G) Mean d-βHB Cmax and difference between βHB Cmax over two visits when subjects separately consumed two ketone ester drinks in both the fed (F) and fasted (G) state. X axis = mean d-βHB Cmax of the 2 visits (mM), Y axis = difference between d-βHB Cmax in each visit. 95% confidence limits are shown as dotted lines. Significance denoted by: *p < 0.05 fed vs. fasted.
If the color is close to the original beige of the test strip, it means there are few if any ketones in your urine and you’ll need to make some dietary tweaks. This may include eating less fat. That’s because if you have doubled down on the healthy fats your body may be rebelling. One way to tell is if you are constipated. If you think this is the case, ratchet back the fats by 50% and see if it makes a difference. 
KE was synthesized as previously described [29]. BMS is a novel agent (sodium/potassium- βHB mineral salt) supplied as a 50 % solution containing approximately 375 mg/g of pure βHB and 125 mg/g of sodium/potassium. Both KE and BMS were developed and synthesized in collaboration with Savind Inc. Pharmaceutical grade MCT oil (~65 % caprylic triglyceride; 45 % capric triglyceride) was purchased from Now Foods (Bloomingdale, IL). BMS was formulated in a 1:1 ratio with MCT at the University of South Florida (USF), yielding a final mixture of 25 % water, 25 % pure βHB mineral salt and 50 % MCT. BD was purchased from Sigma-Aldrich (Prod # B84785, Milwaukee, WI).
For whatever reason, many patients won’t attempt a ketogenic diet—even if the evidence is clear that it could help. Doctors are often hesitant to recommend dramatic dietary shifts—even if they believe in their efficacy—to patients who are already dealing with difficult health issues. If you’ve got a picky kid with epilepsy, a pickier adult with Alzheimer’s, or a cancer patient who refuses to give up the familiar-yet-non-ketogenic foods that give him some small manner of comfort in this trying ordeal, exogenous ketones could make a big difference.
Slowly ramp up your ketone intake. Be patient! 🙂 For many of us, our bodies aren’t used to running on ketones, so you can expect an adjustment period. Try ¼ scoop first. Transitioning to ketosis removes water from our bodies, so getting lots of water will help with any dehydration and stomach issues. Ramp up from there, trying ½ scoop the second week or when you feel it’s appropriate, and then try a whole scoop 1-2 weeks in. You can use it for extra energy or to help get into ketosis if you aren’t there already. Most people use it 0-3 times per day.
“Imagining that everyone is going to go on a ketogenic diet is very unlikely. I’ve done it myself, and it is hard as a diet to sustain for a long period of time,” said Verdin. “The interest for us in BHB is [if] can we recapitulate all the beneficial effects that we are seeing from the ketogenic diet simply by administering BHB as a food or as a drug, whatever you want to call it.”

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×