Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB.
In general, too much caffeine on a regular basis can prevent you from going into ketosis. But since we are trying to get into ketosis in 24 hours I believe it will help you for one day by curbing your hunger and getting through the fast easier. In case, you do not like coffee, you can opt for caffeine drinks or you can opt for other beverages which consist of caffeine in smaller quantities.
If you’re wondering how to get into ketosis in 24 hours, and whether it’s even possible with such a short turnaround time, then combining a keto diet with intermittent fasting is a must. I am a massive advocate of not only the ketogenic diet but also the practice of daily fasting – I swear by it! It’s not for everyone as it does require a lot of discipline to pull off. But if you can commit to it, the benefits in my opinion are well worth it. So you may be wondering what intermittent fasting is? Well, it’s the practice of performing a daily fast from food and (caloric) drinks for at least 16 hours of the day.
Supplemental BHB’s are ideal for people new to the ketogenic way of eating. The changes that happen in your brain and body when adapting to a VLC diet are both immediate and profound. For example, our kidney’s start processing minerals salts much more efficiently. Ironically, after years of being advised to decrease our intake of salt (sodium), it turns out that for people transitioning away from the Standard American Diet (SAD diet) towards a lower carb or ketogenic diet there is actually a need to increase dietary mineral salts such as potassium, sodium, magnesium and calcium. During the process of becoming keto-adapted, it is very important to increase your intake of these essential minerals, in order to prevent the onset of unpleasant symptoms (known as “keto flu”).
A common question is why BHB is the go-to ketone body for exogenous ketone supplements. The likely reason is a combination of its efficient conversion into energy and its ease of formulation. In other words, that it is easier to formulate BHB into a nutritional supplement. And the body efficiently converts BHB to acetoacetic acid, which effectively raises blood ketone levels.
The chart below shows my ketone and glucose response to consuming 40g of KetoneAid’s ketone esters, which had been calculated to be my optimal serving size based on my weight (170lbs) and type of activity (I am moderately active/athletic, but cognitive experiments are a “low” physical activity). Normally, for increased physical performance ketone esters are consumed along with some glucose, but since I was only focusing on cognitive performance I did not consume any glucose.
Should We Use Exogenous Ketones? Ketosis serves a purpose, and it’s probably why we’re able to survive on this planet. Being able to go without eating and use stored fats for energy is a survival tool and possibly far more as we’re now seeing with the keto diet. But it’s probably not a good idea to constantly take exogenous ketones and eat a high carb diet (high blood glucose levels). It’s not natural for the body to have high blood glucose and use ketones. This is a personal opinion, so 
The way you make an exogenous BHB is by attaching it to some type of other compound (sodium, potassium, calcium, or magnesium) so that your body can process the molecule by cleaving the bond between the salt and the beta hydroxybutyrate. BHB + bound to a salt = BHB salts, which is what most people in the ketosis community call exogenous ketones. There are also things called esters, which are basically unbound BHB molecules. These are really disgusting and cause massive digestive issues, so I like to ignore them until we can produce them in a more appealing way.
The ketone esters are, hands-down, the worst tasting compounds I have ever put in my body. The world’s worst scotch tastes like spring water compared to these things. The first time I tried 50 mL of BHB monoester, I failed to mix it with anything (Dom warned me, but I was too eager to try them to actually read his instructions). Strategic error. It tasted as I imagine jet fuel would taste. I thought I was going to go blind. I didn’t stop gagging for 10 minutes. (I did this before an early morning bike ride, and I was gagging so loudly in the kitchen that I woke up my wife, who was still sleeping in our bedroom.) The taste of the AcAc di-ester is at least masked by the fact that Dom was able to put it into capsules. But they are still categorically horrible. The salts are definitely better, but despite experimenting with them for months, I was unable to consistently ingest them without experiencing GI side-effects; often I was fine, but enough times I was not, which left me concluding that I still needed to work out the kinks. From my discussions with others using the BHB salts, it seems I have a particularly sensitive GI system.

Ketone supplementation did not affect the size of the brain, lungs, kidneys or heart of rats. As previously mentioned, the rats were still growing during the experimental time frame; therefore, organ weights were normalized to body weight to determine if organ weight changed independently to growth. There could be several reasons why ketones influenced liver and spleen weight. The ratio of liver to body weight was significantly higher in the MCT supplemented animals (Fig. 5). MCTs are readily absorbed in the intestinal lumen and transported directly to the liver via hepatic portal circulation. When given a large bolus, such as in this study, the amount of MCTs in the liver will likely exceed the β-oxidation rate, causing the MCTs to be deposited in the liver as fat droplets [94]. The accumulated MCT droplets in the liver could explain the higher liver weight to body weight percentage observed with MCT supplemented rats. Future toxicology and histological studies will be needed to determine the cause of the observed hepatomegaly. It should be emphasized that the dose in this study is not optimized in humans. We speculate that an optimized human dose would be lower and may not cause hepatomegaly or potential fat accumulation. Nutritional ketosis achieved with the KD has been shown to decrease inflammatory markers such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46], which may account for the observed decrease in spleen weight. As previously mentioned, Veech and colleagues demonstrated that exogenous supplementation of 5 mM βHB resulted in a 28 % increase in hydraulic work in the working perfused rat heart and a significant decrease in oxygen consumption [28, 41, 42]. Ketone bodies have been shown to increase cerebral blood flow and perfusion [95]. Also, ketone bodies have been shown to increase ATP synthesis and enhance the efficiency of ATP production [14, 28, 40]. It is possible that sustained ketosis results in enhanced cardiac efficiency and O2 consumption. Even though the size of the heart did not change for any of the ketone supplements, further analysis of tissues harvested from the ketone-supplemented rats will be needed to determine any morphological changes and to understand changes in organ size. It should be noted that the Harlan standard rodent chow 2018 is nutritionally complete and formulated with high-quality ingredients to optimize gestation, lactation, growth, and overall health of the animals. The same cannot be said for the standard American diet (SAD). Therefore, we plan to investigate the effects of ketone supplements administered with the SAD to determine if similar effects will be seen when the micronutrient deficiencies and macronutrient profile mimics what most Americans consume.


With single doses of the D-BHB ester as a sports drink, gastrointestinal (GI) side effects are rare. Some studies have reported mild GI side-effects of HVMN Ketone drinks at extremely high doses (4x serving size) or when given in a thick, meal replacement formulation.10,13 However, other studies of athletes reported there were no side-effects of ketone ester drinks hindering sport performance.11,14
In conclusion, drinks containing exogenous ketones, in either ester or salt form, can raise concentrations of blood βHB in humans, although elevation of l-βHB lasts longer after racemic KS consumption. Both KE and KS drinks mildly altered acid-base balance. Exogenous ketones lowered blood glucose and lipids without inhibiting endogenous insulin secretion. The KE delivered highly repeatable blood concentrations of d-βHB, although ketosis was decreased by a meal. Uptake and elimination of d-βHB were similar when several drinks were consumed in succession. The dietary KE could maintain ketosis using drinks taken regularly around a normal meal pattern, or using a continuous infusion via a nasogastric tube. Therefore, ketone drinks are a viable and practical alternative to dietary strategies to achieve ketosis.

Improved cognition: Elevated plasma ketone concentrations divert the brain to utilize ketone bodies for synthesis of phospholipids, which drives growth and myelination. Normally, glucose would be the preferred substrate, which is much less efficient.14 BHB seems to act as a signal for neuronal pathways. These enhance synaptic plasticity, cognition and neuronal stress resistance. 15 In rat studies, ingestion of a ketone ester for 5 days improved their spatial learning and memory. 16.
Improved cognition: Elevated plasma ketone concentrations divert the brain to utilize ketone bodies for synthesis of phospholipids, which drives growth and myelination. Normally, glucose would be the preferred substrate, which is much less efficient.14 BHB seems to act as a signal for neuronal pathways. These enhance synaptic plasticity, cognition and neuronal stress resistance. 15 In rat studies, ingestion of a ketone ester for 5 days improved their spatial learning and memory. 16.
How did I do this? Simple, I went into a full fast and exercised. What prevents you from entering ketosis is all the glycogen stored in your liver and muscles. Your body can use this glycogen instead of ketones to fuel your brain, so until you deplete your stores of glycogen, you won’t be able to enter ketosis. By eating nothing, you are going to tap into the glycogen to fuel your brain because you are eating 0 grams of carbs and will also be using that glycogen to walk around all day.
Exogenous ketones are powerful. They will get you into ketosis whether keto-adapted or not. The benefits of this range from weight loss to sustained mental and physical energy. The benefits are the same as those from nutritional ketosis, however, they’re not a substitute for nutritional ketosis. More on that below before we get into the top 5 exogenous ketones for 2018.
Ketōnd is an intelligently designed formula containing an industry leading 13,900mg blend of high-powered goBHB™ all packed into a 100% transparent, proprietary blend free formula. Ketōnd is widely known as the most ‘potent’ exogenous ketone supplement available that has been formulated for anyone looking to manage their weight, maximize cognition, or simply feel more energetic in a low carbohydrate environment.
But going keto takes work. You have to overhaul your diet, restrict certain classes of foods, and pay close attention to what you eat. People prefer to avoid work if they can. They like shortcuts. Exogenous ketone supplements promise a shortcut—swallow this pill or mix this powder into your water and see your ketones skyrocket without changing the rest of your diet.

Studies show that exercising depletes both liver and muscle glycogen faster than fasting [4]. For example, swimming for an hour and a half depletes the same amount of glycogen as a 24-hour fast. However, it's a good idea to eat a tiny amount of carbs and protein before and after a workout to prevent muscle damage. Your body can break down proteins in your muscles if glycogen stores get depleted during workouts.


Alright, first of all, I tried every combination available for this product. I really loved the idea of adding it to my morning iced coffee with MCT, 1 tbs of heavy cream and stevia. To be honest, my morning coffee is one of my favorite things throughout my day and I was very dissppointed when it didn’t taste *exactly* like an iced mocha. I found it to be very bitter and tough to finish. Not to mention it was ruining my love for my morning coffee time.
While exogenous ketones (EK) are a newer supplement, having entered the market for consumers in just the past few years, scientists have been synthesizing ketone bodies in a lab since the 1960’s. They were useful for scientists studying their use for specific disease conditions, most notably childhood seizure disorders, though they were prohibitively expensive for consumers (1, 2).
Exogenous Ketones have been shown in performance studies of both humans and animals to improve metabolic efficiency, which in essence means that your body is using better fuel that burns more efficiently over longer periods of time, and decreases the amount of fuel you need while performing. Where glucose fails (glycogen depletion), ketones pick up the slack!

Ketone supplementation did not affect the size of the brain, lungs, kidneys or heart of rats. As previously mentioned, the rats were still growing during the experimental time frame; therefore, organ weights were normalized to body weight to determine if organ weight changed independently to growth. There could be several reasons why ketones influenced liver and spleen weight. The ratio of liver to body weight was significantly higher in the MCT supplemented animals (Fig. 5). MCTs are readily absorbed in the intestinal lumen and transported directly to the liver via hepatic portal circulation. When given a large bolus, such as in this study, the amount of MCTs in the liver will likely exceed the β-oxidation rate, causing the MCTs to be deposited in the liver as fat droplets [94]. The accumulated MCT droplets in the liver could explain the higher liver weight to body weight percentage observed with MCT supplemented rats. Future toxicology and histological studies will be needed to determine the cause of the observed hepatomegaly. It should be emphasized that the dose in this study is not optimized in humans. We speculate that an optimized human dose would be lower and may not cause hepatomegaly or potential fat accumulation. Nutritional ketosis achieved with the KD has been shown to decrease inflammatory markers such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46], which may account for the observed decrease in spleen weight. As previously mentioned, Veech and colleagues demonstrated that exogenous supplementation of 5 mM βHB resulted in a 28 % increase in hydraulic work in the working perfused rat heart and a significant decrease in oxygen consumption [28, 41, 42]. Ketone bodies have been shown to increase cerebral blood flow and perfusion [95]. Also, ketone bodies have been shown to increase ATP synthesis and enhance the efficiency of ATP production [14, 28, 40]. It is possible that sustained ketosis results in enhanced cardiac efficiency and O2 consumption. Even though the size of the heart did not change for any of the ketone supplements, further analysis of tissues harvested from the ketone-supplemented rats will be needed to determine any morphological changes and to understand changes in organ size. It should be noted that the Harlan standard rodent chow 2018 is nutritionally complete and formulated with high-quality ingredients to optimize gestation, lactation, growth, and overall health of the animals. The same cannot be said for the standard American diet (SAD). Therefore, we plan to investigate the effects of ketone supplements administered with the SAD to determine if similar effects will be seen when the micronutrient deficiencies and macronutrient profile mimics what most Americans consume.


The CNS cannot use fat as an energy source; hence, it normally utilizes glucose. After 3–4 days without carbohydrate consumption the CNS is ‘forced' to find alternative energy sources, and as demonstrated by the classic experiments of Cahill and colleagues4 this alternative energy source is derived from the overproduction of acetyl coenzyme A (CoA). This condition seen in prolonged fasting, type 1 diabetes and high-fat/low-carbohydrate diets leads to the production of higher-than-normal levels of so-called ketone bodies (KBs), that is, acetoacetate, β-hydroxybutyric acid and acetone—a process called ketogenesis and which occurs principally in the mitochondrial matrix in the liver.6
We carried out the testing across five different days, leaving at least two days between the different testing days so that my teammates had time to recover from the physical performance test each time. The reason we needed five days was that we included a placebo (an artificially flavored drink with no caffeine content) alongside the four brands we tested. Our teammates didn’t know that one of the supplements was a placebo. We also gave everyone a different supplement each time, to rule out any improvement in the tests being a result of people simply getting better at those tests over time.
A small side effect for some people is “ketosis breath”. Many people on a ketogenic diet have experienced this temporary phenomenon, and those taking exogenous ketones can experience it as well. The smell of your breath when you are early in the ketogenic diet can have a hint of acetone to it, and it might be mildly unpleasant, but it’s also harmless. Most gum is pretty low in carbohydrates and is a great option while your keto breath fades.

As I mentioned before, this was by no means a scientific experiment carried out under lab conditions, and this means we can only draw tentative conclusions from any of the data. Nonetheless, carrying out the testing in the way described above should give most people a good idea of how well the ketone supplements show the noticeable benefits they are marketed to have and provide a clear enough basis for a decision on whether or not to buy them.


Another important difference between endogenous and exogenous BOHB is that most synthetic BOHB used in dietary supplements is a mixture of the two ‘D’ and ‘L’ isomers, whereas endogenously produced BOHB consists of just the D-isomer. Metabolically, the two isomers are very different, and current published information indicates that most of the energy and signaling benefits of BOHB derive from the D-form. This is potentially problematic because the L-isomers are not metabolized via the same chemical pathways as the D-forms (Lincoln 1987, Stubbs 2017), and it remains unclear whether humans can convert the L-form to the D-form.
I wrote this post at about the same time Germany won the World Cup in Rio de Janeiro in 2014. There’s been a lot of moving and shaking in the world of exogenous ketones since then, not to mention soccer. Looking back on my post, I still consider it relevant in terms of what exogenous ketones possibly can (and cannot) do for performance. In this case, to see if exogenous ketone esters provide me a “boost” by allowing me to do the same amount of work while expending less energy (and work at a relatively lower VO2) compared to no supplementation.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×