The protocols carried out in these studies were approved by the the South West Frenchay NHS REC (15/SW/0244) (Study 1) and London Queen's Square REC (14/LO/0288) (Study 2 and 3). The studies were carried out in accordance with the recommendations of the Declaration of Helsinki, apart from pre-registration in a database. All subjects gave written informed consent in accordance with the Declaration of Helsinki.


The liver is always producing ketones to some small degree and they are always present in the bloodstream. Under normal dietary conditions, ketone concentrations are simply too low to be of any significant benefit. A ketogenic diet and exogenous ketone supplements will increase the amount of ketone in your body. The idea that  ketones are “toxic” is ridiculous. Ketones are a normal physiological substance that play many important roles in the human body.
Many of us have heard the saying, “Don’t blame the butter for what the bread did.”  Similarly, don’t blame the sodium for what the fries did.  Sodium has been shown to help maintain fluid balance, normal muscle and nerve function, and blood pressure and volume[1]. The movement of sodium ions and other electrolytes across cell membranes helps to facilitate muscle contraction and nerve impulses. Electrolytes also help to maintain fluid balance across intracellular and extracellular spaces and blood volume.
We demonstrated that therapeutic ketosis could be induced without dietary (calorie or carbohydrate) restriction and that this acute elevation in blood ketones was significantly correlated with a reduction in blood glucose (Figs. 2, ​,33 and ​and4).4). The BMS ketone supplement did not significantly induce blood hyperketonemia or reduced glucose in the rats. The KE supplemented rats trended towards reduced glucose levels; however, the lower dose of this agent did not lower glucose significantly, as reported previously in acute response of mice [59]. MCTs have previously been shown to elicit a slight hypoglycemic effect by enhancing glucose utilization in both diabetic and non-diabetic patients [86–88]. Kashiwaya et al. demonstrated that both blood glucose and blood insulin decreased by approximately 50 % in rats fed a diet where 30 % of calories from starch were replaced with ketone esters for 14 days, suggesting that ketone supplementation increases insulin sensitivity or reduced hepatic glucose output [89]. This ketone-induced hypoglycemic effect has been previously reported in humans with IV infusions of ketone bodies [90, 91]. Recently, Mikkelsen et al. showed that a small increase in βHB concentration decreases glucose production by 14 % in post-absorptive health males [92]. However, this has not been previously reported with any of the oral exogenous ketone supplements we studied. Ketones are an efficient and sufficient energy substrate for the brain, and will therefore prevent side effects of hypoglycemia when blood levels are elevated and the patient is keto-adapted. This was most famously demonstrated by Owen et al. in 1967 wherein keto-adapted patients (starvation induced therapeutic ketosis) were given 20 IU of insulin. The blood glucose of fasted patients dropped to 1–2 mM, but they exhibited no hypoglycemic symptoms due to brain utilization of ketones for energy [93]. Therefore, ketones maintain brain metabolism and are neuroprotective during severe hypoglycemia. The rats in the MCT group had a correlation of blood ketone and glucose levels at week 4, whereas the combination of BMS + MCT produced a significant hypoglycemic correlation both at baseline and at week 4. No hypoglycemic symptoms were observed in the rats during this study. Insulin levels were not measured in this study; however, future ketone supplementation studies should measure the effects of exogenous ketones on insulin sensitivity with a glucose tolerance test. An increase in insulin sensitivity in combination with our observed hypoglycemic effect has potential therapy implications for glycemic control in T2D [40]. Furthermore, it should be noted that the KE metabolizes to both AcAc and βHB in 1:1 ratio [29]. The ketone monitor used in this study only measures βHB as levels of AcAc are more difficult to measure due to spontaneous decarboxylation to acetone; therefore, the total ketone levels (βHB + AcAc) measured were likely higher, specifically for the KE [14]. Interestingly, the 10 g/kg dose produced a delayed blood βHB peak for ketone supplements MCT and BMS + MCT. The higher dose of the ketogenic supplements elevated blood levels more substantially, and thus reached their maximum blood concentration later due to prolonged metabolic clearance. It must be noted that the dosage used in this study does not translate to human patients, since the metabolic physiology of rats is considerably higher. Future studies will be needed to determine optimal dosing for human patients.
Hi.. I’ve recently started drinking Keto OS Max and have lost about 20 pounds in the past 4 weeks without strictly sticking to the keto diet and have not exercised once. The only issue I have with Keto OS is the price really. I am wondering how the other BHB/MCT products like Ketond and PerfectKeto compare to Keto OS and what product on the market comes closest to the Keto OS recipes beneficial ingredients. TIA
The challenge for me is what 80% fat looks like. If I eat 1500 calories a day – mostly veggies and protein – how do I best get the fat? I can eat an avocado with my meals, olive oil on my salads, cook my eggs in coconut oil, but I am not clear on how to eat so much fat the healthy way while keeping calories at a lower amount. I eat once – twice a day. I am not a fan of eating tons of saturated fat – bacon on everything is bad advice I have seen pushed out on other pages. Eating Keto does not mean eating high fat meats for your fat. Healthy is the focus. How to eat a heavy veggie, low protein, high fat diet the most healthy way? The calculations are challenging on a tight schedule for one trying to get started :)I would love some solid advice.
Humans in the hunter-gatherer era survived thanks to metabolic flexibility — the body’s ability to use different fuels for energy depending on the nutrients available. This adaptation was vital during a time when the source, quantity, and frequency of food was uncertain[*]. Most of the time, people were fasting, so their bodies ran on ketones, not glucose.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×