I got the Peaches and Cream flavor of Perfect Keto and it's good; a nice sweet break from all the meat, cheese, and vegetables. I would recommend that you use cold water and a shaker bottle though. It takes a bit of vigorous shaking to get the lumps to melt, but it does melt seamlessly. It has a peach taste, but more like a peach with a bitter aftertaste, which I guess is expected with any ketone supplement. I read that a lot of the available supplements taste awful and this one doesn't taste awful. But don't go into it expecting it to taste like a peach pie. :-) I know some of the other supplements say to mix with a keto beverage; I've seen half and half and heavy cream as mixers because the carbs are low and fat high. I haven't tried that as I am only taking in 1,200 calories per day.
I wrote this post at about the same time Germany won the World Cup in Rio de Janeiro in 2014. There’s been a lot of moving and shaking in the world of exogenous ketones since then, not to mention soccer. Looking back on my post, I still consider it relevant in terms of what exogenous ketones possibly can (and cannot) do for performance. In this case, to see if exogenous ketone esters provide me a “boost” by allowing me to do the same amount of work while expending less energy (and work at a relatively lower VO2) compared to no supplementation.
Ketone Salts: While the body uses and makes BHB ketones salts naturally, in supplement form ketone salts are synthetically (lab) made compounds that combine sodium (and/or potassium, calcium, or magnesium) with BHB. The salt is used to raise the pH and make things less acidic. Currently, all ketone supplements on the market are made from ketone salts. While they raise ketone levels, most people will only experience mild nutritional ketosis (~0.6-1.0 mmol/L).
While the KetoneAid folks have been seeing tremendous success working with elite athletes to improve athletic performance, I thought it would be interesting to quantify the effects of ketone esters on cognitive performance. For the week prior to taking the ketones, I re-established baseline scores in a number of cognitive testing areas using Lumosity*:
BS, KC, and PC designed the research studies. BS, PC, RE, SM, and PS carried out the studies. SH provided the gas analyser used in the study on behalf of NTT DOCOMO Inc. BS, MS, and SM analyzed the data and performed statistical analysis in collaboration with JM. BS wrote the paper with help from KC, PC, and OF. KC had primary responsibility for final content. All authors read and approved the final manuscript.

The USDA guidelines recommend less than 2400 mg of sodium per day for healthy adults, and 1500 mg or less for individuals over the age of 50 or at risk for hypertension[2]. For reference, 2300 mg of sodium is the equivalent of about one teaspoon of salt.  Even though these recommendations are promoted by the American Heart Associated and other health-related organizations, recent research has claimed that there is simply not enough evidence to support these guidelines[5]. Worldwide 24-hour urinary sodium excretion data suggest that the normal range is actually 2500-5000 mg per day, which is what most of us consume daily[6]. Additionally, people with high activity levels or chronically low blood pressure may require more sodium than the average person.
When your body transitions from using energy from carbohydrates to ketones, there can be a lot of nasty and unwanted side effects. These include low energy, bloating, irritability, headaches and fatigue. This is because your body is “in between” burning carbs and burning ketones and hasn’t become efficient at burning ketones and producing them from your fat stores yet.
Beta-Hydroxybutyrate (BHB) is naturally ketone body that is produced when free fatty acids are broken down in the liver. The other two types of Ketone bodies are acetoacetate (AcAc) and acetone. Ketones provide pure energy to fuel the human brain and other tissues. The elevation in ketones in your blood have been a rapidly emerging area of research and studies are continuing to show improvements in performance, brown adipose tissue, and several other possible applications.
Ketones are naturally slightly acidic, so the combination of BHB with sodium acts as a bit of a buffer to this acidity. Ketones will also naturally act as a diuretic, so you lose salt, potassium calcium and magnesium, and it is generally encouraged to increase sodium intake with ketones. The addition of sodium to the product will replenish this salt loss.
That’s exactly what ketones do: inhibit lipolysis, the breakdown of body fat into triglycerides and free fatty acids for burning. In normal conditions where ketones are produced endogenously, this is expected and beneficial. If homemade ketones increased lipolysis, you’d end up with ketoacidosis. You’d make ketones which released more body fat which got turned into more ketones which released more body fat which became more ketones. And on and on. It simply wouldn’t stop.

Baseline measurements showed no significant changes in triglycerides or the lipoproteins (data not shown). Data represent triglyceride and lipoprotein concentrations measured after 4 weeks of daily exogenous ketone supplementation. No significant change in total cholesterol was observed at 4 weeks for any of the ketone treatment groups compared to control. (Fig. 1a). No significant difference was detected in triglycerides for any ketone supplement compared to control (Fig. 1b). MCT supplemented animals had a significant reduction in HDL blood levels compared to control (p < 0.001) (Fig. 1c). LDL levels in ketone-supplemented animals did not significantly differ from controls (Fig. 1d).

Hey Staci, great to hear you’re getting back into it! To answer your question, it really depends on the individual but there are definitely things you can do to get back into ketosis faster – working out to deplete your glycogen stores or implementing intermittent fasting into your regimen – these are 2 common ways that should kick start you back in the right direction!
If you noticed that you're not getting into ketosis quick enough, chances are you're not eating enough fat. Eating plenty of healthy fat is essential in inducing ketosis. One reason why this is so is that your body makes ketones from fat. The other reason being that fat is highly satiating, so your body won't slow down or start breaking down muscle for fuel.

Beta-hydroxybutyrate (BHB) is a ketone body produced in the liver naturally under conditions when glucose isn’t very available. Other types of ketones produced via the restriction of dietary carbohydrates are acetoacetate and acetone. A VLCHF or ketogenic diet provides the optimal conditions for this process. Fasting, exercise and/or basic caloric restriction are all also methods for promoting ketogenesis (literally, the making of ketones).
All of the data I’ll present below were from an experiment I did with the help of Dominic D’Agostino and Pat Jak (who did the indirect calorimetry) in the summer of 2013. (I wrote this up immediately, but I’ve only got around to blogging about it now.) Dom is, far and away, the most knowledgeable person on the topic of exogenous ketones. Others have been at it longer, but none have the vast experiences with all possible modalities (i.e., esters versus salts, BHB versus AcAc) and the concurrent understanding of how nutritional ketosis works. If people call me keto-man (some do, as silly as it sounds), they should call Dom keto-king.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×