Exogenous ketones don’t seem to improve high-intensity, glucose-intensive exercise, increasing fat burning during steady state exercise but dropping top-end high-intensity performance. Another study found that ketone dieters reduced 50-minute time trial performance in cyclists, though another group of researchers have criticized the methods. Even when a ketone ester didn’t improve performance in the shuttle run to exhaustion and 15 meter sprint repeats, it did reduce the drop in brain function following the exercise.
Once the body is able to generate energy with the help of exogenous ketones which are present in the bloodstream, it would start looking for other sources of ketones. This would encourage the body to tap into the vast reserve of fat which is accumulated in the body. Thus, the process of ketosis is accelerated when you consume extra exogenous ketones. This also leads to quicker weight loss and the body entering ketosis faster.
So I’ve been primarily on a Keto diet for almost 6 months. During this time, I have fine tuned a lot to get my ketone levels up (Eating more fat and less protein). Most recently, I have used blood measurements for my ketone levels and I fluctuate between .6 and 2.6. The higher readings I get on the days I workout in the morning (about 5 hours before I draw blood and take a reading). I don’t have any problems sticking to the diet. It only seems to get easier. I’ve also incorporated 16 hour fasts which also are becoming easier over time. My priority and motivation for doing a keto diet is first and foremost weight loss. So far I have lost 40 pounds and I need to lose about 20 more. I do however want to improve my performance (running) and strength (I am doing the Stronglifts 5×5 program now).
There is a great deal of positive speculation that exogenous ketones can be beneficial for inflammation, cognitive enhancement, and even protection against certain types of cancer. There is mounting evidence that the ketogenic way of eating can help many people, and when used appropriately with realistic expectations, exogenous ketone supplementation can enhance these positive effects (25).
If the goal is to deplete glucose levels so that we can start producing ketone bodies, then forcibly exerting physical energy through exercise is a great way to go about it. Keeping it relatively low intensity to begin with and working out in the morning is recommended as this helps to keep down your cortisol (stress hormone) levels. This only applies at the beginning of your keto adaptation process, as intense workouts such as HIIT once already keto-adapted will be completely fine.
If you’ve done any reading about ketosis, you no doubt read at some point that ketosis is a “natural” state. You may have read on a bit more and learned what is meant by that statement or you may have simply skipped ahead to the keto success stories and decided to give it a try. But we’d like to direct your attention back to that little tidbit of information about keto being “natural” for a moment.
Nutritional ketosis induced with the KD has proven effective for the metabolic management of seizures and potentially other disorders [1–26]. Here we present evidence that chronic administration of ketone supplements can induce a state of nutritional ketosis without the need for dietary carbohydrate restriction and with little or no effect on lipid biomarkers. The notion that we can produce the therapeutic effects of the KD with exogenous ketone supplementation is supported by our previous study which demonstrated that acutely administered KE supplementation delays central nervous system (CNS) oxygen toxicity seizures without the need for dietary restriction [29]. We propose that exogenous ketone supplementation could provide an alternative method of attaining the therapeutic benefits of nutritional ketosis, and as a means to further augment the therapeutic potential of the KD.
Exogenous ketones cause the body to rely less on fat as fuel (see Fig 3). Fat takes longer to metabolise for energy than muscle glycogen. This is why fatty acids are not the preferred fuel under heavy exercise. This could be useful for keto-adapted athletes performing high-intensity cardiovascular or strength training.12 This is particularly useful for the Keto-adapted athlete who wants to undergo high-intensity cardiovascular or strength training.
Our bodies are produce three types of ketone bodies for fuel: beta-hydroxybutyrate (BHB), acetoacetate (AcAc), and acetone. Each is used by the body differently. Acetone is the least abundant, produced in much smaller amounts, and is usually exhaled through the lungs rather than being used as fuel.3 Acetoacetate is part of the metabolic pathway whereby humans make and use ketones, but it tends to be found in the blood at lower levels than BHB.
Ketone Esters: These are not normally found in the body, but exogenous ketone esters convert into BHB once it is in the body. They are also synthetically (lab) made compounds that link an alcohol to a ketone body, which can then be metabolized by the liver into a ketone. They are like ketone salts on steroids as they have 5-10 time more BHB per serving/maximum daily intake than ketone salts. To date, pure ketone esters have been very expensive to produce and have only been available to researchers, elite athletes (Tour de France cyclists), and the US Department of Defense (people have spent more than $20,000 to have an independent lab produce a single serving!).
One other thing I must point out is also that we are talking about being in ketosis and not being fully keto adapted. You enter ketosis when your body starts producing ketones above a specified level, being fully keto adapted means that your body is full adapted to  use fat as your primary energy source and that the production of certain enzymes in your body is fully adapted. This doesn’t happen in one day and it takes about 1 month on average to be fully keto adapted. But we are not looking for this as we just want to end the most unpleasant period and to start losing weight.

Caveat emptor: the following post doesn’t come close to answering most of these questions. I only document my experience with BHB salts (and a non-commercial version at that), but say little to nothing about my experience with BHB esters or AcAc esters. But it will provide you will some context and understanding about what exogenous ketones are, and what they might do for athletic performance. We’ll likely podcast about the questions and topics above and cover other aspects of exogenous ketones in more detail.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com