“Though the small amount of carbohydrates in the diets may be more than balanced by the potential sugar production from the large amount of protein to keep the ratio of fatty acid to glucose below the generally accepted level of ketogenesis, the respiratory quotient data suggest another mechanism also” ß (most likely the CPT-1A mutation, which had not been discovered at that time)
Considering both the broad therapeutic potential and limitations of the KD, an oral exogenous ketone supplement capable of inducing sustained therapeutic ketosis without the need for dietary restriction would serve as a practical alternative. Several natural and synthetic ketone supplements capable of inducing nutritional ketosis have been identified. Desrochers et al. elevated ketone bodies in the blood of pigs (>0.5 mM) using exogenous ketone supplements: (R, S)-1,3 butanediol and (R, S)-1,3 butanediol-acetoacetate monoesters and diester [48]. In 2012, Clarke et al. demonstrated the safety and efficacy of chronic oral administration of a ketone monoester of R-βHB in rats and humans [49, 50]. Subjects maintained elevated blood ketones without dietary restriction and experienced little to no adverse side effects, demonstrating the potential to circumvent the restrictive diet typically needed to achieve therapeutic ketosis. We hypothesized that exogenous ketone supplements could produce sustained hyperketonemia (>0.5 mM) without dietary restriction and without negatively influencing metabolic biomarkers, such as blood glucose, total cholesterol, HDL, LDL, and triglycerides. Thus, we measured these biomarkers during a 28-day administration of the following ketone supplements in rats: naturally-derived ketogenic supplements included medium chain triglyceride oil (MCT), sodium/potassium -βHB mineral salt (BMS), and sodium/potassium -βHB mineral salt + medium chain triglyceride oil 1:1 mixture (BMS + MCT) and synthetically produced ketogenic supplements included 1, 3-butanediol (BD), 1, 3-butanediol acetoacetate diester/ ketone ester (KE).
If Prüvit’s Keto OS-Max is “not a weight loss supplement” as stated in their disclaimer, why is the official website full of success stories of people who claim to have lost huge amounts of weight from taking the supplements? Ketōnd also feature a number of weight loss success stories on their site. I will get to why there is a problem with weight loss claims later on.
If you have tried other ketone supplements that haven’t worked as promised or tasted terrible. Have no fear. This stuff is what a ketone supplement should be. It’s incredible what customers tell me. How it’s given them more energy, focus, drive. Helped them lose weight and suppress their appetite. Help them train harder at the gym and all kinds of great stories.*
This was a big surprise. We were at the very least expecting that drinking a ketone supplement would cause blood ketones to rise, but an average increase of 0.33 mmol/L is very small. The supplement associated with the highest average increase in blood ketones was Prüvit’s Keto-OS Max, but it was only an increase of 0.6 mmol/L. Brianna Stubbs, the ketone researcher I consulted with, agrees that an increase of below 2.0-3.0 mmol/L is unlikely to be of much use.

LDL is the lipoprotein particle that is most often associated with atherosclerosis. LDL particles exist in different sizes: large molecules (Pattern A) or small molecules (Pattern B). Recent studies have investigated the importance of LDL-particle type and size rather than total concentration as being the source for cardiovascular risk [56]. Patients whose LDL particles are predominantly small and dense (Pattern B) have a greater risk of cardiovascular disease (CVD). It is thought that small, dense LDL particles are more able to penetrate the endothelium and cause in damage and inflammation [82–85]. Volek et al. reported that the KD increased the pattern and volume of LDL particles, which is considered to reduce cardiovascular risk [73]. Though we did not show a significant effect on LDL levels for ketone supplements, future chronic feeding studies will investigate the effects of ketone supplementation on lipidomic profile and LDL particle type and size.
The current recommendation for magnesium is 310-320 mg for adult women and 400-420 mg for adult men. Magnesium deficiencies are common; 2005-2006 data indicates that the majority of Americans’ dietary magnesium intake was less than the Estimated Average Requirement (EAR) for the respective age groups[25]. The EAR for a nutrient is about 20% LESS than the RDA. Current data on magnesium intake and deficiency in the US is not readily available, as magnesium testing is not part of routine electrolyte testing in hospitals and clinics[26].
Ketone monoester and diester compounds may circumvent the problems associated with inorganic ion consumption in KS drinks. KE ingestion rapidly increased blood ketone concentrations to >5 mM in animals (Desrochers et al., 1995a,b; Clarke et al., 2012a) and the first oral, non-racemic KE for human consumption, (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, raised blood βHB concentrations to 3–5 mM in healthy adults (Clarke et al., 2012b; Shivva et al., 2016) and athletes (Cox et al., 2016; Holdsworth et al., 2017; Vandoorne et al., 2017). However, the pharmacokinetics and pharmacodynamics of this KE with confounding factors, such as prandial state or multiple KE drinks, have not been characterized.
So long long does it take to get into ketosis? This transition could take anywhere from 48 hours to one week. The length in time will vary depending upon your activity level, lifestyle, body type and carbohydrate intake. There are several ways you can speed up this process, like intermittent fasting, drastically decreasing your carb intake and supplementation.
If you do the same calculations as I did above for estimating fat oxidation, you’ll see that EE in this case was approximately 13.92 kcal/min, while fat oxidation was only 67% of this, or 9.28 kcal/min, or 1.03 g/min. So, for this second effort (the test set) my body did about 5% less mechanical work, while oxidizing about 25% less of my own fat. The majority of this difference, I assume, is from the utilization of the exogenous BHB, and not glucose (again, I will address below what I think is happening with glucose levels).
In fact this was one of the biggest surprises I had when exploring ketosis. For years I have been following a cyclical lower carb diet. For years I wouldn’t consume a carb until later in the afternoon (ala Carb Backloading style). After eating 5 days without any carbs I tested my ketone levels… they were 0.1 mmol. This reading was done first thing in the morning (10 hours fasted) after 5 days without a carb in my diet.
Though research involving ketone supplements is still in the early stages, it seems promising. One study published in February 2018 in Obesity suggests exogenous ketone esters lower hunger hormones and act as appetite suppressors. That can lead to weight loss because “if we don’t feel hungry, gosh, we probably aren’t going to eat like we were,” Griffin says.
Next, BHB salts are the only supplement that elevates BHB levels while muscle glycogen remains at capacity (low muscle glycogen can drastically impede long-duration athletic performance). In short, athletes who consume carb-based diets, and those on low-carb diets, stand to benefit from exogenous ketone supplements taken prior to training/exercise.
Great information. And apparently I have found out what my problem is. I got into Keto a few weeks ago. Transitioned into ketosis after a week, and then had to travel….while I followed a keto diet as best I could, (I took your powdered MCT Oil with me and it is great), but I did fall out of ketosis. Now it’s been 2 weeks and I can’t seem to get back into ketosis.

I have, though, recently been diagnosed with ovarian cancer. After reading through your blog, I noticed there was a little about Ketogenetic diet and cancer. I purchased the MCT oil powder in hopes that will help me get into ketosis for the purpose of “starving” the cancer cells. Other then focus, I didn’t see any particular format for something like this. Here are my questions: How much of the powder should I take? And do you think the diet plus the MCT oil is a good idea for 1) aiding chemotherapy and 2) helping shrink the number of cancer cells?
The concentrations of blood d-βHB after KE drinks were highly repeatable whether consumed whilst fasted or fed (Figures 4F,G). The d-βHB Cmax values ranged from 1.3 to 3.5 mM when fed and 2.3 to 4.7 mM when fasted. There was no significant effect of visit order on d-βHB kinetics, with the maximal difference in d-βHB Cmax reached by one individual being 1.2 mM when fed and 1.9 mM when fasted. Approximately 61% of the variation in the data was attributable to feeding (fed vs. fasted), <1% to visit order, 16% to inter-participant variability, and the residual 24% variability due to non-specific random effects.
Meanwhile Brinkworth, et al., in their 2009 paper "Long-term Effects of a Very Low-Carbohydrate Diet and a Low-Fat Diet on Mood and Cognitive Function" looked at the effects on ketogenic diet on cognitive function and mood. The study participants ate a ketogenic diet for a year and the researchers found that mood levels decreased when compared to a group eating a high carb/low fat diet. They go on to remark “there was no evidence that the dietary macronutrient composition of LC and LF diets affected cognitive functioning over the long term, as changes in cognitive function were similar for both diets”.
I just started down the Keto path with the help (hopefully) of Ketond. My problem with all the websites and info I’ve seen is that no-one says how often you should take the EK. The packages say the serving size is one scoop…. but how many servings per day? It (Ketond) also says one serving will put you in Ketosis for 3-5 hours – so, does that mean you should take another serving after the 3-5 hours to stay in Ketosis?
A lot of people who use ketogenic diets will include a regular (i.e. weekly) carb refeed meal. There are various reasons behind doing this. If you are doing a lot of glycolic based training, then the carb refeed can help bump up muscle glycogen levels and in turn boost performance. Others use these refeeds as a way to keep their thyroid health in check, and finally some people use these refeeds as a ‘cheat day’ – so that they can still enjoy the pleasures from carbohydrates!
Intense exercise -- more than just fidgeting or pacing -- uses ketones, when glucose is in short supply, which means the body has to create more ketones to replace what you use. This is great for those who are used to a moderate to intense activity level, but intensity is a fine dance between encouraging ketone production and elevating cortisol for the rest of us.
In a keto-adapted individual where ketone metabolism is brisk with up to 100 grams or more being oxidized (i.e., ‘burned for energy’) daily, the small amount lost in breath and urine as acetone is minor. But because this breakdown occurs spontaneously without needing the help of enzymes, it also happens to AcAc in a stored beverage or food (even in an air-tight container), making the shelf-life of AcAc-containing products problematic. Thus all current ketone supplements consist of BOHB in some form rather than the naturally occurring mix of BOHB and AcAc produced by the liver.
Recent studies suggest that many of the benefits of the KD are due to the effects of ketone body metabolism. Interestingly, in studies on T2D patients, improved glycemic control, improved lipid markers, and retraction of insulin and other medications occurred before weight loss became significant. Both βHB and AcAc have been shown to decrease mitochondrial reactive oxygen species (ROS) production [36–39]. Veech et al. have summarized the potential therapeutic uses for ketone bodies [28, 40]. They have demonstrated that exogenous ketones favorably alter mitochondrial bioenergetics to reduce the mitochondrial NAD couple, oxidize the co-enzyme Q, and increase the ΔG’ (free enthalpy) of ATP hydrolysis [41]. Ketone bodies have been shown to increase the hydraulic efficiency of the heart by 28 %, simultaneously decreasing oxygen consumption while increasing ATP production [42]. Thus, elevated ketone bodies increase metabolic efficiency and as a consequence, reduce superoxide production and increase reduced glutathione [28]. Sullivan et al. demonstrated that mice fed a KD for 10–12 days showed increased hippocampal uncoupling proteins, indicative of decreased mitochondrial-produced ROS [43]. Bough et al. showed an increase of mitochondrial biogenesis in rats maintained on a KD for 4–6 weeks [44, 45]. Recently, Shimazu et al. reported that βHB is an exogenous and specific inhibitor of class I histone deacetylases (HDACs), which confers protection against oxidative stress [38]. Ketone bodies have also been shown to suppress inflammation by decreasing the inflammatory markers TNF-a, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46, 47]. Therefore, it is thought that ketone bodies themselves confer many of the benefits associated with the KD.
Athletic performance benefits: The use of exogenous ketone supplements for bettering physical/athletic performance is promising for several reasons. Firstly, taking exogenous ketones (particularly BHB salts) induces acute nutritional ketosis for upwards of eight hours, mimicking fasting physiology (e.g. increases fat burning, insulin sensitivity, etc.).[3]
Too low of sodium intake can be just as dangerous as getting too much. As with all essential nutrients, the graph for risk associated with sodium and health problems is actually u-shaped, such that both low and high quantities of sodium are associated with risk of cardiovascular disease and all-cause mortality[8]. Evidence also suggests that restricting sodium to the recommendations may rapidly increase plasma levels of renin, angiotensin II, and aldosterone, which can lead to complications in itself[9].
The two compounds commonly referred to as ‘ketone bodies’ (BOHB and AcAc) are produced and used for multiple purposes across nature from algae to mammals, but seldom in concentrations useful for extraction as human food. For this reason, the source of most exogenous ketones is chemical synthesis. Furthermore, most current research and use of ketone supplements focuses on BOHB. That is because AcAc is chemically unstable – it slowly breaks down to form acetone by releasing of one molecule of CO2.
Each serving of Core BHB™ contains a clinically effective dose (12 grams) of pure goBHB™ exogenous ketones. This ensures you’re getting the purest and most efficacious BHB salts available. Research and scientific findings continue to demonstrate the promising benefits of exogenous ketones, especially when used with a calorie-controlled diet and healthy exercise regimen.
To determine the reason for the differences in blood d-βHB concentration, the KE and KS drinks were analyzed for enantiomeric purity. The KE contained >99% of the d-isoform, whereas ~50% of the KS βHB was the l-isoform (Figure ​(Figure1D).1D). Plasma samples from participants who consumed the high dose KS drink (n = 5) were analyzed to reveal higher l-βHB than d-βHB, the total βHB Cmax being 3.4 ± 0.2 mM (Figure ​(Figure1E),1E), with a total βHB AUC of 549 ± 19 mmol.min. After 4 h, plasma l-βHB remained elevated at 1.9 ± 0.2 mM; differences in urinary excretion of the two isoforms could not explain this observation as both d- and l-βHB were excreted in proportion to their blood AUCs (Figure ​(Figure1F).1F). Therefore, in order to determine the time required for l-βHB elimination, a follow-up experiment was undertaken in which subjects (n = 5) consumed 3.2 mmol.kg−1 of βHB as KE and KS with hourly blood and breath sample collection up to 4 h, plus additional samples at 8 h and 24 h post-drink. l-βHB was found to be 1.1 ± 0.1 mM at 4 h, and 0.7 ± 0.2 mM after 8 h, but undetectable after 24 h (Figure 1G). Low amounts of d-βHB (0.3 ± 0.1 mM) were present at 24 h, presumably due to endogenous production. Both ketone drinks significantly increased breath acetone concentration, but at a slower rate than blood d-βHB, reaching a peak after 3 h that was twice as high following the KE (87 ± 9 ppm) than the KS (44 ± 10 ppm), suggesting that d-βHB was readily converted to acetone, but l-βHB was not (p < 0.005, Figure ​Figure1H1H).
Appetite suppression: Appetite was measured in 10 males and 5 females after consuming a ketone ester (KE) or a dextrose (DEXT) drink . Desire to eat and perception of hunger dropped after both drinks, but the KE was 50% more effective for 1.5-4hrs. Insulin levels rose for both drinks but were 3x less with the KE drink after 30mins (Fig 2). The hunger hormone, ghrelin, was significantly lower between 2 to 4 hours after drinking the KE (Fig 2). In conclusion Ketone esters delay the onset of hunger and lower the desire to eat. 8
It's also a smart idea to start slowly with this supplement. We can thank Dave Asprey for the term “disaster pants” which has been used by those who try MCT oil at too high a dose when they first start using it. There is a chance that you can experience the same unpleasant gastrointestinal effect with exogenous ketones if you start with too high a dose, or if you maintain a higher carbohydrate diet while using this supplement. Used in appropriate doses, it gets absorbed through your stomach into your liver, then sent out to the rest of your body.
I have tried the following preparations of exogenous ketones: BHB monoester, AcAc di-ester, BHB mineral salt (BHB combined with Na+, K+, and Ca2+). I have consumed these at different concentrations and in combination with different mixing agents, including MCT oil, pure caprylic acid (C8), branch-chained amino acids, and lemon juice (to lower the pH). I won’t go into the details of each, though, for the sake of time.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×