On day 29, rats were sacrificed via deep isoflurane anesthesia, exsanguination by cardiac puncture, and decapitation 4–8 h after intragastric gavage, which correlated to the time range where the most significantly elevated blood βHB levels were observed. Brain, lungs, liver, kidneys, spleen and heart were harvested, weighed (AWS-1000 1 kg portable digital scale (AWS, Charleston, SC)), and flash-frozen in liquid nitrogen or preserved in 4 % paraformaldehyde for future analysis.
Some think so because higher ketone levels imply increased fuel for the brain and heart (that prefer ketones), and increased protection against inflammation and oxidation. But are the health benefits coming from the ketones themselves, or are they coming from the state you have to put your body in to actually produce them? And if you're kicking yourself out of ketosis by ingesting ketones would you still get the same benefits?
Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB.
Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001), which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and infusions gave identical D-βHB AUC of 1.3–1.4 moles.min.
AirPi air quality alcohol AliveCor analytics basis belmont stakes biohacking bulletproof cholesterol cognitive data detox diet electromagnetic radiation environment fasting fasting mimicking diet glucose gsr hdl health heart rate heart rate variability hrv interview ketosis labs ldl lead mct Moves paleo personal data podcast quantifiedself quantified self sauna self tracking sensors skin sleep toxins triglycerides water quality
Given that blood βHB after identical ketone drinks can be affected by factors such as food or exercise (Cox et al., 2016), the accuracy of tools for non-invasive monitoring of ketosis should be investigated. Breath acetone and urinary ketone measurements provide methods to approximate blood ketosis without repeated blood sampling (Martin and Wick, 1943; Taboulet et al., 2007). However, breath acetone did not change as rapidly as blood βHB following KE and KS drinks. Acetone is a fat-soluble molecule, so may have been sequestered into lipids before being slowly released, resulting in the differences observed here. Similarly, significant differences in blood d-βHB between study conditions were not reflected in the urinary d-βHB elimination. As the amount of d-βHB excreted in the urine (≈0.1–0.5 g) represented ~1.5% of the total consumed (≈23.7 g), it appears that the major fate of exogenous d-βHB was oxidation in peripheral tissues. These results suggest that neither breath acetone nor urinary ketone measurements accurately reflect the rapid changes in blood ketone concentrations after ketone drinks, and that blood measurement should be the preferred method to quantitatively describe ketosis. That said, it should be noted that although commercial handheld monitors are the most practical and widely available tool for measuring blood ketones, they can overestimate blood D-βHB compared to laboratory measures (Guimont et al., 2015) and these monitors do not measure L-βHB and so may not provide accurate total blood ketone concentrations, especially if a racemic ketone salt has been consumed.

The metabolic phenotype of endogenous ketosis is characterized by lowered blood glucose and elevated FFA concentrations, whereas both blood glucose and FFA are lowered in exogenous ketosis. During endogenous ketosis, low insulin and elevated cortisol increase adipose tissue lipolysis, with hepatic FFA supply being a key determinant of ketogenesis. Ketone bodies exert negative feedback on their own production by reducing hepatic FFA supply through βHB-mediated agonism of the PUMA-G receptor in adipose tissue, which suppresses lipolysis (Taggart et al., 2005). Exogenous ketones from either intravenous infusions (Balasse and Ooms, 1968; Mikkelsen et al., 2015) or ketone drinks, as studied here, inhibit adipose tissue lipolysis by the same mechanism, making the co-existence of low FFA and high βHB unique to exogenous ketosis.
BS, KC, and PC designed the research studies. BS, PC, RE, SM, and PS carried out the studies. SH provided the gas analyser used in the study on behalf of NTT DOCOMO Inc. BS, MS, and SM analyzed the data and performed statistical analysis in collaboration with JM. BS wrote the paper with help from KC, PC, and OF. KC had primary responsibility for final content. All authors read and approved the final manuscript.
I started this website because it was hard to find trustworthy, evidence-based information about the ketogenic diet. Information that was published and peer reviewed by respected scientific journals. After years of research, I'm sure you'll achieve great results in a healthy way following my advice. I do my best to translate scientific research jargon into plain English. Remember, it's always a good idea to consult a doctor before starting a new diet!

Every 7 days, animals were briefly fasted (4 h, water available) prior to intragastric gavage to standardize levels of blood metabolites prior to glucose and βHB measurements at baseline. Baseline (time 0) was immediately prior to gavage. Whole blood samples (10 μL) were taken from the saphenous vein for analysis of glucose and βHB levels with the commercially available glucose and ketone monitoring system Precision Xtra™ (Abbott Laboratories, Abbott Park, IL). Blood glucose and βHB were measured at 0, 0.5, 1, 4, 8, and 12 h after test substance administration, or until βHB returned to baseline levels. Food was returned to animals after blood analysis at time 0 and gavage. At baseline and week 4, whole blood samples (10 μL) were taken from the saphenous vein immediately prior to gavage (time 0) for analysis of total cholesterol, high-density lipoprotein (HDL), and triglycerides with the commercially available CardioChek™ blood lipid analyzer (Polymer Technology Systems, Inc., Indianapolis, IN). Low-density lipoprotein (LDL) cholesterol was calculated from the three measured lipid levels using the Friedewald equation: (LDL Cholesterol = Total Cholesterol - HDL - (Triglycerides/5)) [51, 52]. Animals were weighed once per week to track changes in body weight associated with hyperketonemia.
These studies were approved by external Research Ethics Committees (London Queen's Square: 14/LO/0288 and South West Frenchay: 15/SW/0244) and were conducted in accordance with the Declaration of Helsinki (2008). Studies took place at the University of Oxford between September 2014 and September 2016. Participants were healthy, aged 21–57, non-smokers and had no history of major illness. Female participants were using oral contraception to minimize the effects of menstrual phase on results. Participants provided written informed consent prior to inclusion, and completed a confidential medical screening questionnaire to determine eligibility. Anthropometric characteristics are shown in Table ​Table1.1. Sample sizes were chosen following an estimated power calculation based on the effect size in previous work using KE drinks (Clarke et al., 2012b; Shivva et al., 2016).

Increased calcium levels in the bloodstream may contribute to the hardening of arteries (atherosclerosis), which in turn can lead to a heart attack.  Calcium from supplements enters the bloodstream in one bolus, whereas we usually tend to get calcium from foods in small doses from the breakdown process. This might explain why calcium from food doesn’t create the same risk that is introduced by calcium supplements. At first glance, it seems to be the case that high calcium intake –at least from supplements–may not be ideal.


The final graph, below, shows the continuous data for only VO2 side-by-side for the 20 minute period. The upper (blue) line represents oxygen consumption under control conditions, while the lower line (red) represents oxygen consumption following the BHB ingestion. In theory, given that the same load was being overcome, and the same amount of mechanical work was being done, these lines should be identical.

In general, too much caffeine on a regular basis can prevent you from going into ketosis. But since we are trying to get into ketosis in 24 hours I believe it will help you for one day by curbing your hunger and getting through the fast easier. In case, you do not like coffee, you can opt for caffeine drinks or you can opt for other beverages which consist of caffeine in smaller quantities.


The chart below shows my ketone and glucose response to consuming 40g of KetoneAid’s ketone esters, which had been calculated to be my optimal serving size based on my weight (170lbs) and type of activity (I am moderately active/athletic, but cognitive experiments are a “low” physical activity). Normally, for increased physical performance ketone esters are consumed along with some glucose, but since I was only focusing on cognitive performance I did not consume any glucose.
Recently, a friend of mine’s dad had high blood pressure. His doctor told him to stop consuming eggs and to avoid adding extra salt to his foods. That’s it. His recommendation was to rid a good, high-quality protein source, yet French fries, chicken nuggets, and even chicken noodle soup were all presumably okay. I’ll never understand some of these recommendations; nonetheless, they happen day in and day out, all over the world.
It's also important to note that you probably should follow a low carb diet or ketosis diet when using this product. Your brain prefers glucose as fuel because it's easier for the body to metabolize from food, so if you are eating a standard American diet of 100g+ carbs per day, or excessive protein, this won't help you lose weight, even with exercise because you'll have more than enough glucose to power your brain. Carbohydrate restriction, moderate protein, and lots of good healthy fat is what puts your body into ketosis.
Exogenous ketones provide the body with another fuel to employ. Think about it like an electric car that runs on both gas and electricity: by consuming ketones along with carbohydrates, the body will preferentially burn the ketones first, saving the carbohydrates for later. Exogenous ketones allow us to enter a metabolic state that wouldn't occur naturally: the state of having full carbohydrate stores, as well as elevated ketones in the blood. This could be advantageous to athletes looking to boost their physical performance. 
I also concluded that post by discussing the possibility of testing this (theoretical) idea in a real person, with the help of exogenous (i.e., synthetic) ketones. I have seen this effect in (unpublished) data in world class athletes not on a ketogenic diet who have supplemented with exogenous ketones (more on that, below). Case after case showed a small, but significant increase in sub-threshold performance (as an example, efforts longer than about 4 minutes all-out).

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×