Intermittent fasting is using the same reasoning – instead of using the fats we are eating to gain energy, we are using our stored fat. That being said, you might think it’s great – you can just fast and lose more weight. You have to take into account that later on, you will need to eat extra fat in order to hit your daily macros (the most important thing). If you’re overeating on fats here, you will store the excess.
If you have already mastered the Very Low Carbohydrate (VLC) or ketogenic way of eating, and/or are eating at a caloric deficit, exercising or fasting you are naturally creating the optimal conditions for your body to produce ketones and put your body into nutritional ketosis. By strict adherence to a well-formulated ketogenic diet (complete with higher levels of mineral salts) you should be able to produce all the ketones you need naturally (endogenously). If you are new or inexperienced in ketogenic eating however; or if you or a family member struggles to adhere to a ketogenic diet, then supplementation with exogenous ketones may be very beneficial. Not only will ketone supplements help to mitigate hunger and carb cravings, but they will also help you stave off carb flu symptoms (see below), giving you the best possible chance of long-term success.
Blood d-βHB concentrations rapidly increased to a maximum of 2.8 ± 0.2 mM following the KE drink and to 1.0 ± 0.1 mM following the KS drink (Figure ​(Figure1A).1A). After the peak was reached, blood d-βHB disappearance was non-linear, and followed first order elimination kinetics as reported previously (Clarke et al., 2012b; Shivva et al., 2016). d-βHB Tmax was ~2-fold longer following KS drinks vs. KE drinks (p < 0.01, Figure ​Figure1B),1B), and KS d-βHB AUC was ~30–60% lower than the KE drink (p < 0.01, Figure ​Figure1C1C).
Every 7 days, animals were briefly fasted (4 h, water available) prior to intragastric gavage to standardize levels of blood metabolites prior to glucose and βHB measurements at baseline. Baseline (time 0) was immediately prior to gavage. Whole blood samples (10 μL) were taken from the saphenous vein for analysis of glucose and βHB levels with the commercially available glucose and ketone monitoring system Precision Xtra™ (Abbott Laboratories, Abbott Park, IL). Blood glucose and βHB were measured at 0, 0.5, 1, 4, 8, and 12 h after test substance administration, or until βHB returned to baseline levels. Food was returned to animals after blood analysis at time 0 and gavage. At baseline and week 4, whole blood samples (10 μL) were taken from the saphenous vein immediately prior to gavage (time 0) for analysis of total cholesterol, high-density lipoprotein (HDL), and triglycerides with the commercially available CardioChek™ blood lipid analyzer (Polymer Technology Systems, Inc., Indianapolis, IN). Low-density lipoprotein (LDL) cholesterol was calculated from the three measured lipid levels using the Friedewald equation: (LDL Cholesterol = Total Cholesterol - HDL - (Triglycerides/5)) [51, 52]. Animals were weighed once per week to track changes in body weight associated with hyperketonemia.
So long long does it take to get into ketosis? This transition could take anywhere from 48 hours to one week. The length in time will vary depending upon your activity level, lifestyle, body type and carbohydrate intake. There are several ways you can speed up this process, like intermittent fasting, drastically decreasing your carb intake and supplementation.
To enter ketosis, up to 80%of your daily calories should come from fat. To put this into a frame of reference, if you eat 2,000 calories a day, 1,600 of those calories should come from fat sources. This comes out to roughly 144-170 grams of fat. Both quantity and quality are equally important, so consume fats from high-quality sources, like omega-3 and omega-6 fatty acids.
Exogenously delivered ketone supplements significantly altered rat weight gain for the duration of the study (Fig. 6). However, rats did not lose weight and maintained a healthy range for their age. Rats have been shown to effectively balance their caloric intake to prevent weight loss/gain [97–99]. Due to the caloric density of the exogenous ketone supplements (Table 1) it is possible for the rats to eat less of the standard rodent chow and therefore less carbohydrates while maintaining their caloric intake. Food intake was not measured for this study. However, if there was a significant carbohydrate restriction there would be a signifcant change in basal blood ketone and blood glucose levels. As the hallmark to the KD, carbohydrate restriction increases blood ketone levels and reduces blood glucose levels. Neither an increase in basal blood ketone levels nor a decrease in basal blood glucose levels was observed in this study (Fig. 7). Additionally, if there were an overall blood glucose decrease due to a change in food intake, this would not explain the rapid reduction (within 30 min) in blood glucose correlated with an elevation of blood ketone levels after an intragastric bolus of ketone supplement (Figs. 2, ​,33 and ​and44).
The way you make an exogenous BHB is by attaching it to some type of other compound (sodium, potassium, calcium, or magnesium) so that your body can process the molecule by cleaving the bond between the salt and the beta hydroxybutyrate. BHB + bound to a salt = BHB salts, which is what most people in the ketosis community call exogenous ketones. There are also things called esters, which are basically unbound BHB molecules. These are really disgusting and cause massive digestive issues, so I like to ignore them until we can produce them in a more appealing way.
Again, there are very interesting animal studies plus some single case reports and small uncontrolled trials of humans with neurodegenerative disease and cancer given ketogenic diets and/or exogenous ketones (Murray 2016, Poff 2015, Roberts 2017, Newport 2015, Cunnane 2016). In some cases where the patient does not have the cognitive resources to comply with a well-formulated ketogenic diet, or where target blood levels of BOHB that work in animals are hard to achieve in humans by diet alone, supplemental ketones may have an important role to play in the prevention, management, or reversal of these disease categories.
Exogenously delivered ketone supplements significantly altered rat weight gain for the duration of the study (Fig. 6). However, rats did not lose weight and maintained a healthy range for their age. Rats have been shown to effectively balance their caloric intake to prevent weight loss/gain [97–99]. Due to the caloric density of the exogenous ketone supplements (Table 1) it is possible for the rats to eat less of the standard rodent chow and therefore less carbohydrates while maintaining their caloric intake. Food intake was not measured for this study. However, if there was a significant carbohydrate restriction there would be a signifcant change in basal blood ketone and blood glucose levels. As the hallmark to the KD, carbohydrate restriction increases blood ketone levels and reduces blood glucose levels. Neither an increase in basal blood ketone levels nor a decrease in basal blood glucose levels was observed in this study (Fig. 7). Additionally, if there were an overall blood glucose decrease due to a change in food intake, this would not explain the rapid reduction (within 30 min) in blood glucose correlated with an elevation of blood ketone levels after an intragastric bolus of ketone supplement (Figs. 2, ​,33 and ​and44).
Exogenous ketones provide the body with another fuel to employ. Think about it like an electric car that runs on both gas and electricity: by consuming ketones along with carbohydrates, the body will preferentially burn the ketones first, saving the carbohydrates for later. Exogenous ketones allow us to enter a metabolic state that wouldn't occur naturally: the state of having full carbohydrate stores, as well as elevated ketones in the blood. This could be advantageous to athletes looking to boost their physical performance. 
Also known as the carb flu, the keto flu is commonly experienced by people who are transitioning to a Ketogenic diet. “Keto flu” is not actually flu but mimics the experience of flu with very similar symptoms. It can happen when someone who has become accustomed to relying primarily on carbohydrates as fuel removes them from their diet. Whilst this is a necessary step towards adjusting from being a sugar-burner to a fat-burner, the sudden change can trigger some unpleasant symptoms, much like withdrawing from an addictive substance. Keto flu symptoms can include drowsiness, nausea, dizziness, achy muscles, mental fogginess and an irritable mood. The good news though, is that most of these experiences relate to dehydration and electrolyte depletion, and so are easily prevented or managed. Simply adding a ¼ - ½ teaspoon of a high quality sea salt or sodium/potassium powder to a glass of water works wonders; however you may still require a separate magnesium supplement; particularly if you are prone to muscle cramps or restless legs. Another popular way to manage your electrolytes is via a good quality bone broth powder. Finally, since BHB’s are normally delivered via a mineral salt base*, keto flu symptoms are easily prevented or reduced by using an exogenous ketone supplement powder.
When you restrict carbs, the kidneys excrete a lot of sodium. Not replacing this sodium can leave you feeling light headed. I recommend having a big glass of spring water with ½ teaspoon of Celtic sea salt twice a day (first thing in the morning and midafternoon are two times that work well). A long with this, make sure you use a lot of salt on your meals.
Great question. So if you are already in nutritional ketosis from your diet, exogenous ketones would still help raise ketone (energy) levels when you want that (maybe for focus at work or energy at the gym. They also help get you back into ketosis after cheat meals and skip the “keto flu” which is the period when your body is using up stored glycogen.

MCT Oil is a keto supplement that helps your body make ketones. The oil contains pure medium-chain triglycerides (MCTs), which are types of fatty acids that your body prefers using for immediate energy. Unlike long-chain fatty acids, MCTs don't require enzymes and bile for digestion and they go straight to the liver where they are used for making free fatty acids or ketones. Studies on MCTs show that they promote weight loss [5].

Meanwhile Brinkworth, et al., in their 2009 paper "Long-term Effects of a Very Low-Carbohydrate Diet and a Low-Fat Diet on Mood and Cognitive Function" looked at the effects on ketogenic diet on cognitive function and mood. The study participants ate a ketogenic diet for a year and the researchers found that mood levels decreased when compared to a group eating a high carb/low fat diet. They go on to remark “there was no evidence that the dietary macronutrient composition of LC and LF diets affected cognitive functioning over the long term, as changes in cognitive function were similar for both diets”.


When the results for the supplement and the placebo were within 0.2 (either % or mmol/L) of each other, we classed the supplement as neither “better” nor “worse” than the placebo. We gave a “winning brand” sticker to the brand that scored highest against the placebo for each marker, but not for physical performance, since none of the supplements performed better than the placebo for that marker.
Plus, take a look at this promotional video from Prüvit. It claims that “ketones make the fat melt off your body”, which is simply not true (I’ll get back to this later). It also claims that if you wanted to reach ketosis naturally, you would either need to work out 10x harder and longer or be like one of the “extreme people” who “biohack their bodies” to get into ketosis, which “can take weeks or months”. For me, this is irresponsible. A keto diet can be simple and enjoyable, but this video makes switching to a healthy, real food, keto diet sound extreme and difficult while promoting an easy way out in the form of a drink. And that’s just bad advice.
It’s not clear that the Weir coefficients used to estimate EE are relevant for someone in ketosis, let alone someone ingesting exogenous BHB. (The Weir formula states that EE is approximated by 3.94 * VO2 + 1.11 * VCO2, where VO2 and VCO2 are measured in L/min; 3.94 and 1.11 are the Weir coefficients, and they are derived by tabulating the stoichiometry of lipid synthesis and oxidation of fat and glucose and calculating the amount of oxygen consumed and carbon dioxide generated.) While this doesn’t impact the main observation—less oxygen was consumed with higher ketones—it does impact the estimation of EE and substrate use.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×