Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. – Glucose is the brain’s principal energy substrate. In Alzheimer’s disease (AD), there appears to be a pathological decrease in the brain’s ability to use glucose. Neurobiological evidence suggests that ketone bodies are an effective alternative energy substrate for the brain. Elevation of plasma ketone body levels through an oral dose of medium chain triglycerides (MCTs) may improve cognitive functioning in older adults with memory disorders. On separate days, 20 subjects with AD or mild cognitive impairment consumed a drink containing emulsified MCTs or placebo. Significant increases in levels of the ketone body beta-hydroxybutyrate (beta-OHB) were observed 90 min after treatment (P=0.007) when cognitive tests were administered. beta-OHB elevations were moderated by apolipoprotein E (APOE) genotype (P=0.036). For 4+ subjects, beta-OHB levels continued to rise between the 90 and 120 min blood draws in the treatment condition, while the beta-OHB levels of 4- subjects held constant (P<0.009). On cognitive testing, MCT treatment facilitated performance on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) for 4- subjects, but not for 4+ subjects (P=0.04). Higher ketone values were associated with greater improvement in paragraph recall with MCT treatment relative to placebo across all subjects (P=0.02). Additional research is warranted to determine the therapeutic benefits of MCTs for patients with AD and how APOE-4 status may mediate beta-OHB efficacy.

Intense exercise — more than just fidgeting or pacing — uses ketones, when glucose is in short supply, which means the body has to create more ketones to replace what you use. This is great for those who are used to a moderate to intense activity level, but intensity is a fine dance between encouraging ketone production and elevating cortisol for the rest of us.

As stated above, there appears to be a difference between supplemental and dietary calcium intake, which can be important to keep in mind.  One study found aggregate calcium intakes above 1400 mg per day (from dietary and supplemental intake combined) to be associated with higher death rates, cardiovascular disease, and ischemic heart disease in women[15]. A 2014 meta-analysis found an association between dietary calcium intake and cardiovascular mortality[16]. The meta-analysis actually found a u-shaped relationship, where dietary calcium intakes that were both lower and greater than 800 mg/day were gradually associated with increased risk of cardiovascular mortality.
Baseline measurements showed no significant changes in triglycerides or the lipoproteins (data not shown). Data represent triglyceride and lipoprotein concentrations measured after 4 weeks of daily exogenous ketone supplementation. No significant change in total cholesterol was observed at 4 weeks for any of the ketone treatment groups compared to control. (Fig. 1a). No significant difference was detected in triglycerides for any ketone supplement compared to control (Fig. 1b). MCT supplemented animals had a significant reduction in HDL blood levels compared to control (p < 0.001) (Fig. 1c). LDL levels in ketone-supplemented animals did not significantly differ from controls (Fig. 1d).

The keto-esters are more appropriate for delivering higher doses of BOHB, but with repeated dosing can push the limits of taste and GI tolerance. There has been fairly extensive research on a compound 3-hydroxybutyl 3-hydroxybutyrate that is converted via hydrolysis and liver metabolism to yield 2 molecules of ketones, presumably mostly D-BOHB (Clarke 2012 and 2014). In a study involving lean athletes, an approximate 50 gram dose raised blood BOHB levels to 3 mM after 10 min and reached 6 mM by 20 min. Submaximal exercise resulted in increased ketone disposal from 2 to 3 hours and contributed significantly to whole body energy use during exercise (Cox 2016). This product has been shown to significantly reduce appetite after a single dose (Stubbs 2018) but its effect on body weight in humans over a longer period of time has not been studied, nor has its effect on blood glucose control been reported in humans with type 2 diabetes. However a single dose prior to a glucose tolerance test in healthy humans reduced blood glucose area-under-curve by 11% and non-esterified fatty acid area-under-curve by 44% (Myette-Cote 2018).
I wrote this post at about the same time Germany won the World Cup in Rio de Janeiro in 2014. There’s been a lot of moving and shaking in the world of exogenous ketones since then, not to mention soccer. Looking back on my post, I still consider it relevant in terms of what exogenous ketones possibly can (and cannot) do for performance. In this case, to see if exogenous ketone esters provide me a “boost” by allowing me to do the same amount of work while expending less energy (and work at a relatively lower VO2) compared to no supplementation.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com