Neuroprotective benefits: A natural part of the aging process is neurodegeneration, which is largely responsible for cognitive defects like Alzheimer’s disease. Recent research suggests that exogenous ketone supplementation can drastically slow neurodegeneration and the resulting decrease in mental function.[7] However, the mechanism behind this finding remains to be elucidated; though, researchers suggest exogenous ketones act to reduce brain inflammation. Glucose, on the contrary, may actually accelerate inflammatory response in the brain.[8]


Disclaimer: This blog is for general informational purposes only and does not constitute the practice of medicine, nursing or other professional health care services, including the giving of medical advice, and no doctor/patient relationship is formed. The use of information on this blog or materials linked from this blog is at the user's own risk. The content of this blog is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Users should not disregard, or delay in obtaining, medical advice for any medical condition they may have, and should seek the assistance of their health care professionals for any such conditions.
Too much cortisol tells the liver that you are in physical danger and need a lot of energy fast. The brain doesn’t understand the difference between physical danger and emotional stress. When emotionally stressed, the brain thinks you’re in a life-and-death situation, so the liver comes to your rescue and gives you the glucose you need to fight off your attacker.
You must realise that our bodies are lazy and switching to a new energy source means hard work, that means that your body will not do this easily and you basically have to force it. One way to speed up this process is to put your body into fight or flight mode. My preferred  controlled exercise to do this is to have a high intensity workout followed immediately by a  cold shower.  I am describing it in the article to go slowly, but in this case it will actually be beneficial if you can force your self to go straight into a cold shower and try to stay there at least 2 minutes. One of the benefits of this that your body will produce the hormone noradrenaline. Obviously this is something for people in perfect health. Please advice your doctor before you want to take cold showers.
Because they’re so expensive, you want to make sure you pick a good one. Griffin and Langer say to ignore the companies that make these supplements sound too good to be true. Just like with any supplement, Griffin says it’s important to look at what’s in it. Beware of products with lots of fillers and instead go for one with a short, straightforward list of ingredients (Griffin likes the options from KetoSports).
Hello! I’m planning on taking a short vacation and will be having “kept friendly” drinks, mostly vodka and water with lemon and stevia. When should I take my exogenous ketones? That night before bed or early the next morning or after the 3 day vacation is completely over? I’m unsure how to manage this to have the best odds of staying in ketosis and get back to burning FAT. Also, I just purchased Instaketones from Julian Bakery, what are your thoughts on this brand? Thanks for what you do!
There’s debate raging about which dietary tactic is the god particle for making you leaner, faster and healthier. How the ketogenic diet option squares off against the low carb route is vital for understanding the ways in which exogenous ketone supplements work. To get into ketosis the natural way, you need to keep your carb intake low enough for long enough for your body to begin using use fat as fuel. Your liver then converts a portion of that fat into energy molecules called ketones. These work together with glucose as a fuel source, but can actually kick in faster, allowing your body to operate more economically during lengthy, high-energy exercise efforts.
Ketogenic diets have been successfully used to treat diseases that have an underlying metabolic component, effectively decreasing seizures in recalcitrant pediatric epilepsy (Kossoff et al., 2003), lowering blood glucose concentrations in type 2 diabetes mellitus (Feinman et al., 2015) and aiding weight-loss (Bueno et al., 2013). Emerging evidence supports several clinical uses of ketogenic diets, for example in neurodegenerative diseases (Vanitallie et al., 2005), specific genetic disorders of metabolism (Veech, 2004) and as an adjunct to cancer therapy (Nebeling et al., 1995). Ketone bodies themselves may underlie the efficacy of the ketogenic diet, either through their role as a respiratory fuel, by altering the use of carbohydrate, protein and lipids (Thompson and Wu, 1991; Cox et al., 2016), or through other extra- and intracellular signaling effects (Newman and Verdin, 2014). Furthermore, ketone metabolism may offer a strategy to improve endurance performance and recovery from exercise (Cox et al., 2016; Evans et al., 2017; Holdsworth et al., 2017; Vandoorne et al., 2017). However, achieving compliance to a ketogenic diet can be difficult for both patients and athletes and may have undesirable side effects, such as gastro-intestinal upset (Cai et al., 2017), dyslipidemia (Kwiterovich et al., 2003) or decreased exercise “efficiency” (Edwards et al., 2011; Burke et al., 2016). Hence, alternative methods to raise blood ketone concentrations have been sought to provide the benefits of a ketogenic diet with no other dietary changes.
We demonstrated that therapeutic ketosis could be induced without dietary (calorie or carbohydrate) restriction and that this acute elevation in blood ketones was significantly correlated with a reduction in blood glucose (Figs. 2, ​,33 and ​and4).4). The BMS ketone supplement did not significantly induce blood hyperketonemia or reduced glucose in the rats. The KE supplemented rats trended towards reduced glucose levels; however, the lower dose of this agent did not lower glucose significantly, as reported previously in acute response of mice [59]. MCTs have previously been shown to elicit a slight hypoglycemic effect by enhancing glucose utilization in both diabetic and non-diabetic patients [86–88]. Kashiwaya et al. demonstrated that both blood glucose and blood insulin decreased by approximately 50 % in rats fed a diet where 30 % of calories from starch were replaced with ketone esters for 14 days, suggesting that ketone supplementation increases insulin sensitivity or reduced hepatic glucose output [89]. This ketone-induced hypoglycemic effect has been previously reported in humans with IV infusions of ketone bodies [90, 91]. Recently, Mikkelsen et al. showed that a small increase in βHB concentration decreases glucose production by 14 % in post-absorptive health males [92]. However, this has not been previously reported with any of the oral exogenous ketone supplements we studied. Ketones are an efficient and sufficient energy substrate for the brain, and will therefore prevent side effects of hypoglycemia when blood levels are elevated and the patient is keto-adapted. This was most famously demonstrated by Owen et al. in 1967 wherein keto-adapted patients (starvation induced therapeutic ketosis) were given 20 IU of insulin. The blood glucose of fasted patients dropped to 1–2 mM, but they exhibited no hypoglycemic symptoms due to brain utilization of ketones for energy [93]. Therefore, ketones maintain brain metabolism and are neuroprotective during severe hypoglycemia. The rats in the MCT group had a correlation of blood ketone and glucose levels at week 4, whereas the combination of BMS + MCT produced a significant hypoglycemic correlation both at baseline and at week 4. No hypoglycemic symptoms were observed in the rats during this study. Insulin levels were not measured in this study; however, future ketone supplementation studies should measure the effects of exogenous ketones on insulin sensitivity with a glucose tolerance test. An increase in insulin sensitivity in combination with our observed hypoglycemic effect has potential therapy implications for glycemic control in T2D [40]. Furthermore, it should be noted that the KE metabolizes to both AcAc and βHB in 1:1 ratio [29]. The ketone monitor used in this study only measures βHB as levels of AcAc are more difficult to measure due to spontaneous decarboxylation to acetone; therefore, the total ketone levels (βHB + AcAc) measured were likely higher, specifically for the KE [14]. Interestingly, the 10 g/kg dose produced a delayed blood βHB peak for ketone supplements MCT and BMS + MCT. The higher dose of the ketogenic supplements elevated blood levels more substantially, and thus reached their maximum blood concentration later due to prolonged metabolic clearance. It must be noted that the dosage used in this study does not translate to human patients, since the metabolic physiology of rats is considerably higher. Future studies will be needed to determine optimal dosing for human patients.

Geek note: Technically speaking, beta hydroxybutyrate is NOT a legitimate ketone body. Ketone bodies, or ketones are technically molecules with carbonyl carbons which are bonded to two additional carbon atoms. One carbon has four available bonds. When that carbon is double bonded to oxygen and also has two single bonds to carbon, we have a ketone body. If you have a carbon atom that is double bonded to an oxygen (carbonyl group), which is also bound to an -OH group instead of two different carbon atoms, that would be a carboxylic acid, but that really doesn’t matter in this case. For all intents and purposes of the ketogenic diet, betahydroxybutyrate should be considered one of the three ketone bodies and a “ketone” nonetheless. Your body uses BHB pimarily for energy in the state of ketosis, so it’s a ketone, okay?

The two compounds commonly referred to as ‘ketone bodies’ (BOHB and AcAc) are produced and used for multiple purposes across nature from algae to mammals, but seldom in concentrations useful for extraction as human food. For this reason, the source of most exogenous ketones is chemical synthesis. Furthermore, most current research and use of ketone supplements focuses on BOHB. That is because AcAc is chemically unstable – it slowly breaks down to form acetone by releasing of one molecule of CO2.


Ketosis is a unique metabolic state where your body burns fat instead of glucose for fuel. Glucose is a simple sugar molecule derived from carbohydrates. Your body prefers using glucose to using fat and protein to make energy. This is because glucose it is easy to burn as it doesn't require much energy. On the other hand, your body uses fat and protein to build and repair tissue and make hormones.


Fortunately a new way to test ketosis has been developed - and that is by measuring acetone levels in the breath. This is rather new technology but based on the reports I have seen it does look reasonably reliable. The testing process is simple, you use a device like that made by Ketonix, you breathe into it, wait a minute or so and it will give you a color indicating the state of ketosis you are in. However, there are numerous downsides:
Hi- Thank you for this super helpful post. I’m new to Keto and supplementing Keytones. I just got the Julian Bakery Keytones and am curious about how to take them as there are no instructions on the packaging. Indeed the website has a diet plan to follow with the keytones but I am very suspicious of it because it is 0 fat which I believe is not healthy for brain or body and given that I have soft tissue and joint issues, I try to eat enough fat daily. I want to lose weight and I crossfit 5 days per week. So how do I best start with using the keytone supplements? I took a scoop full yesterday when they arrived (in the early afternoon) but hadn’t yet eaten and I think that was a mistake because I had immediate diarrhea which lasted a few hours, even after eating.

I’m not sure whether I am leto-adapted but have been following the keto program for about 6 weeks. The scale and the eye confirm I have been burning fat. I’ve been using ketostix to keep track of ketones as I don’t prefer to prick my fingers to get blood measurements. I have reached my weight loss goal and planning to transition to maintenance in the next couple of weeks. I’m curious if exogenous ketones will be aid in maintaining my weight.
Exogenous ketones are powerful. They will get you into ketosis whether keto-adapted or not. The benefits of this range from weight loss to sustained mental and physical energy. The benefits are the same as those from nutritional ketosis, however, they’re not a substitute for nutritional ketosis. More on that below before we get into the top 5 exogenous ketones for 2018.
If you do the same calculations as I did above for estimating fat oxidation, you’ll see that EE in this case was approximately 13.92 kcal/min, while fat oxidation was only 67% of this, or 9.28 kcal/min, or 1.03 g/min. So, for this second effort (the test set) my body did about 5% less mechanical work, while oxidizing about 25% less of my own fat. The majority of this difference, I assume, is from the utilization of the exogenous BHB, and not glucose (again, I will address below what I think is happening with glucose levels).

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×