Over the years, we have seen and heard many different things about the effects and benefits of Raspberry Ketone supplements. Be it capsules or sprays, the discussion around them actually working always had opposing sides. So, we decided the best solution was to do our own research by conducting our own reviews on the most talked about products, to find out exactly how good they were as a "top-rated" ketone supplement.
Blood d-βHB, pH, bicarbonate (HCO3-) and electrolytes measured in arterialized blood samples from resting subjects (n = 7) following a ketone ester or salt drink containing 3.2 mmol.kg−1 of βHB. Shaded areas represent the normal range. Values are means ± SEM. (A) Venous blood d-βHB. (B) Arterialized blood pH. (C) Blood bicarbonate. (D) Blood potassium. (E) Blood sodium. (F) Blood chloride. †p < 0.05 difference between KE and KS, *p < 0.05 difference from baseline value.
Recently, a friend of mine’s dad had high blood pressure. His doctor told him to stop consuming eggs and to avoid adding extra salt to his foods. That’s it. His recommendation was to rid a good, high-quality protein source, yet French fries, chicken nuggets, and even chicken noodle soup were all presumably okay. I’ll never understand some of these recommendations; nonetheless, they happen day in and day out, all over the world.
After a minimal amount of internet "research," I decided to try my first exogenous ketones. I have used the ketogenic diet off and on for at 15 years and my body is pretty efficient at fat adapting. (Usually by the end of 2 strict days, I am in ketosis, but not without symptoms and intense cravings.) I can consistently fast from carbs for 20 - 24 hours and do this consistently. However, around hour 20, my mind begins to negotiate that intermittent fasting is advantageous too and that I can afford to have some carbs once a day. Hence the yo-yo effect.
Nutritional ketosis induced with the KD has proven effective for the metabolic management of seizures and potentially other disorders [1–26]. Here we present evidence that chronic administration of ketone supplements can induce a state of nutritional ketosis without the need for dietary carbohydrate restriction and with little or no effect on lipid biomarkers. The notion that we can produce the therapeutic effects of the KD with exogenous ketone supplementation is supported by our previous study which demonstrated that acutely administered KE supplementation delays central nervous system (CNS) oxygen toxicity seizures without the need for dietary restriction [29]. We propose that exogenous ketone supplementation could provide an alternative method of attaining the therapeutic benefits of nutritional ketosis, and as a means to further augment the therapeutic potential of the KD.
There are enticing anecdotes of supplemental ketones being used to boost human physical performance in competitive events, notably among elite cyclists. Given that BOHB can deliver more energy per unit of oxygen consumed than either glucose or fatty acids (Sato 1995, Cox 2016, Murray 2016), this makes sense. But what we do not know is if there is any required period of adaptation to the use of exogenous ketones, and thus how to employ them in training. It is clear that exogenous ketones decrease adipose tissue lipolysis and availability of fatty acids, the exact opposite to what happens on a well formulated ketogenic diet. This distinction between exogenous ketones and ketogenic diets on adipose tissue physiology and human energy balance underscores an important reason why these two ketone-boosting strategies should not be conflated.
We carried out the testing across five different days, leaving at least two days between the different testing days so that my teammates had time to recover from the physical performance test each time. The reason we needed five days was that we included a placebo (an artificially flavored drink with no caffeine content) alongside the four brands we tested. Our teammates didn’t know that one of the supplements was a placebo. We also gave everyone a different supplement each time, to rule out any improvement in the tests being a result of people simply getting better at those tests over time.
Electrolyte Imbalance – The physiological reasoning behind electrolytes becoming depleted during a state of ketosis is due to lack of water retention and frequent urination. When supplementing with exogenous ketones, the acute state of ketosis will likely increase the frequency of urination, but it won’t deplete glycogen stores. Therefore, it may be useful to drink an electrolyte solution if you are urinating a lot after taking exogenous ketones, but it’s dependent upon how you feel.
Ketone Esters: Synthetically-made compounds that link an alcohol to a ketone body, which is metabolised in the liver to a ketone. Ketone esters are used primarily in research for testing their efficacy in elevating ketone body levels (below is a generic structure of a BHB ester). Yet, the first commercial Ketone ester drink will be available in 2018 by HVMN. Research esters are reportedly very unpleasant tasting which HVMN hopes to change.
SHEER Ketones BHB Salts made this top 5 list because they do a good job of avoiding all the common unwanted additives and fillers in BHB salts. It’s good to see we have options to choose from when trying to avoid these types of ingredients. SHEER Ketones’ other ingredients include citric acid, fruit and vegetable juice powder for the color, and “natural flavors.” It uses a stevia leaf extract (Rebaudioside A).
For whatever reason, many patients won’t attempt a ketogenic diet—even if the evidence is clear that it could help. Doctors are often hesitant to recommend dramatic dietary shifts—even if they believe in their efficacy—to patients who are already dealing with difficult health issues. If you’ve got a picky kid with epilepsy, a pickier adult with Alzheimer’s, or a cancer patient who refuses to give up the familiar-yet-non-ketogenic foods that give him some small manner of comfort in this trying ordeal, exogenous ketones could make a big difference.
I carried out a survey among Diet Doctor users as background research to the experiment (a big thank you to the 638 people who responded!). In the survey, 28% of the respondents reported that they do take ketone supplements. The top four benefits that these respondents reported experiencing were increased energy, improved focus/cognition, reduced hunger and weight loss.
There are numerous benefits that come with living a ketogenic lifestyle. The ketones give your body the much-needed energy and protect you from being affected by different mental conditions such as epilepsy and the Alzheimer’s disease. There is no doubt that ketogenic lifestyle is the surest way of living a healthy and disease-free life. With the tips above, you can get into ketosis in 24 hours effortlessly.
This research is a good reminder to discuss with your doctor before taking any supplements. Given the widespread use of calcium supplements, more research is required before any final conclusions can be drawn. Several ketone companies have tried to avoid the large sodium loads but instead relied on a bump in the calcium content from the BHB ketone salts, seemingly without consideration for the aforementioned results. Calcium BHB will likely absorb slower compared to sodium BHB due to digestion and absorption kinetics.  For those looking to optimize brain uptake of ketones, this probably isn’t the best strategy (as uptake is directly proportional to the levels in the blood).   Be cautious of supplements running from the sodium and chasing the calcium BHB instead, and make sure you factor that into your overall daily needs.
Once the body is able to generate energy with the help of exogenous ketones which are present in the bloodstream, it would start looking for other sources of ketones. This would encourage the body to tap into the vast reserve of fat which is accumulated in the body. Thus, the process of ketosis is accelerated when you consume extra exogenous ketones. This also leads to quicker weight loss and the body entering ketosis faster.
The concentrations of blood d-βHB after KE drinks were highly repeatable whether consumed whilst fasted or fed (Figures 4F,G). The d-βHB Cmax values ranged from 1.3 to 3.5 mM when fed and 2.3 to 4.7 mM when fasted. There was no significant effect of visit order on d-βHB kinetics, with the maximal difference in d-βHB Cmax reached by one individual being 1.2 mM when fed and 1.9 mM when fasted. Approximately 61% of the variation in the data was attributable to feeding (fed vs. fasted), <1% to visit order, 16% to inter-participant variability, and the residual 24% variability due to non-specific random effects.
Ketogenic diets have been successfully used to treat diseases that have an underlying metabolic component, effectively decreasing seizures in recalcitrant pediatric epilepsy (Kossoff et al., 2003), lowering blood glucose concentrations in type 2 diabetes mellitus (Feinman et al., 2015) and aiding weight-loss (Bueno et al., 2013). Emerging evidence supports several clinical uses of ketogenic diets, for example in neurodegenerative diseases (Vanitallie et al., 2005), specific genetic disorders of metabolism (Veech, 2004) and as an adjunct to cancer therapy (Nebeling et al., 1995). Ketone bodies themselves may underlie the efficacy of the ketogenic diet, either through their role as a respiratory fuel, by altering the use of carbohydrate, protein and lipids (Thompson and Wu, 1991; Cox et al., 2016), or through other extra- and intracellular signaling effects (Newman and Verdin, 2014). Furthermore, ketone metabolism may offer a strategy to improve endurance performance and recovery from exercise (Cox et al., 2016; Evans et al., 2017; Holdsworth et al., 2017; Vandoorne et al., 2017). However, achieving compliance to a ketogenic diet can be difficult for both patients and athletes and may have undesirable side effects, such as gastro-intestinal upset (Cai et al., 2017), dyslipidemia (Kwiterovich et al., 2003) or decreased exercise “efficiency” (Edwards et al., 2011; Burke et al., 2016). Hence, alternative methods to raise blood ketone concentrations have been sought to provide the benefits of a ketogenic diet with no other dietary changes.
The salts typically utilize sodium, potassium, calcium, or magnesium as the cation. Because these cations vary in molecular weight and valence (1+ or 2+), the amount of mineral delivered per gram of BOHB varies from 10% for the magnesium salt to 27% for potassium. Given that recommended daily intakes of these various minerals range from a few hundred milligrams up to 5 grams, whereas the daily ketone intake goal to mimic nutritional ketosis blood levels would need to be on the order of 50 grams, achieving this goal with ketone salts would severely challenge human dietary mineral tolerance.
In a subset of participants (n = 7) the effect of 3.2 mmol.kg−1 of βHB as KE and KS on blood pH and electrolytes after ketone drinks was investigated. Blood d-βHB kinetics were similar to those in the initial experiment (Figure ​(Figure3A).3A). After 60 min, blood pH declined from 7.41 to 7.31 following a KE drink (p < 0.001, Figure ​Figure3B).3B). Bicarbonate fell significantly from 23.6 ± 0.7 to 17.0 ± 0.8 mM following KE drinks (p < 0.001), but remained within the normal range (Figure 3C). Both ketone drinks significantly decreased blood potassium concentrations by 0.7 mM (both drinks p < 0.05, Figure 3D) and increased sodium and chloride concentrations (Sodium: both drinks p < 0.05, Chloride: KE = p < 0.05, KS = p < 0.005, Figures 3E,F).
Administration of ketone supplementation significantly reduced blood glucose over the course of the study (Fig. 3a, b). MCT (5 g/kg) decreased blood glucose compared to control within 30 min which was sustained for 8 h at baseline and at week 1. MCT (10 g/kg) likewise decreased blood glucose within 30 min and lasted through the 12 h time point during weeks 2, 3, and 4. BMS + MCT (5 g/kg) lowered blood glucose compared to control from hours 1–8 only at week 1. BMS + MCT (10 g/kg) lowered blood glucose compared to control within 30 min and remained low through the 12 h time point at weeks 2, 3, and 4. Rats supplemented with BMS had lower blood glucose compared to control at 12 h in week 4 (10) (Fig. 3a). Administration of BD did not significantly change blood glucose levels at any time point during the 4-week study. KE (5 g/kg) significantly lowered blood glucose levels at 30 min for week 1, 2, 3, and 4 and was sustained through 1 h at weeks 2–4 and sustained to 4 h at week 3. (Fig. 3b).
Intermittent fasting involves merely changing your eating cycle whereby you prolong the period in which you will have your first meal. This diet plan helps to create a smaller eating window. In doing so, it means that you will consume less amount of calories. In addition to depriving the body some calories, intermittent fasting forces the body to begin burning fats. It does so to compensate for the current deficiency.
How did I do this? Simple, I went into a full fast and exercised. What prevents you from entering ketosis is all the glycogen stored in your liver and muscles. Your body can use this glycogen instead of ketones to fuel your brain, so until you deplete your stores of glycogen, you won’t be able to enter ketosis. By eating nothing, you are going to tap into the glycogen to fuel your brain because you are eating 0 grams of carbs and will also be using that glycogen to walk around all day.
Possible GI distress (flatulence) at exceptionally high doses –  In the studies referenced in this article, exogenous ketones taken in large doses occasionally resulted in GI distress, especially flatulence. However, the cause of this is hypothesized to be due to the fact that ketones were mixed in a milky fluid that wasn’t very palatable. If you’re taking a nominal dose of exogenous ketones the likelihood of GI distress is rather low. Moreover, if some GI distress is prevalent, it should improve as you become accustomed to taking ketones.
Beta-hydroxybutyrate (BHB): Nutrition strategies that rely on carbohydrates always leave us needing more food. On the other hand, the ketogenic diet relies on and taps into your body’s stored fat for longer, more stable energy with no bonking. Many keto-lovers adopt this lifestyle because they love the mental clarity, focus, and productivity that they experience while in ketosis. Whether you’re full-time keto or not, our Perfect Keto is designed to support ultimate mental performance.
It’s not clear that the Weir coefficients used to estimate EE are relevant for someone in ketosis, let alone someone ingesting exogenous BHB. (The Weir formula states that EE is approximated by 3.94 * VO2 + 1.11 * VCO2, where VO2 and VCO2 are measured in L/min; 3.94 and 1.11 are the Weir coefficients, and they are derived by tabulating the stoichiometry of lipid synthesis and oxidation of fat and glucose and calculating the amount of oxygen consumed and carbon dioxide generated.) While this doesn’t impact the main observation—less oxygen was consumed with higher ketones—it does impact the estimation of EE and substrate use.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×