North Americans typically live pro-inflammatory, pro-disease lives (think about your everyday: likely sitting in a flexed position for hours on end, not enough natural sunlight, not enough movement, artificial food stuffs, artificial colouring, going to bed late, blue light exposure, less in-person contact with our loved ones, late night snacks, the list goes on and on).
For example, the popular Raspberry Ketones supplement is far different than what we have been discussing in this article. Raspberry ketones are unrelated to the ketones that are produced in the body and are not the same as the ketone salts that have been covered above. There are some limited studies that indicate raspberry ketones may be helpful for weight loss, but they are inconsistent. Raspberry ketones are the molecules that give raspberries their scent and flavor, and in some cases, aren’t even derived from raspberries at all.
I began by simply playing all of the games over and over again (each game many dozens of times over the period of a week) to remove any “learning effect.” I then selected two games from each category (for a total of 10 games) and for a period of five days prior to “ketone-day” played each game five times each day. My “before ketones” baseline scores put me in the top 4% of all Lumosity users, so I was already in a good place. But could I improve even more, just one hour after consuming the ketones?

I’m getting an increasing number of questions about exogenous ketones. Are they good? Do they work for performance? Is there a dose-response curve? If I’m fasting, can I consume them without “breaking” the fast? Am I in ketosis if my liver isn’t producing ketones, but my BOHB is 1.5 mmol/L after ingesting ketones? Can they “ramp-up” ketogenesis? Are they a “smart drug?” What happens if someone has high levels of both glucose and ketones? Are some products better than others? Salts vs esters? BHB vs AcAc? Can taking exogenous ketones reduce endogenous production on a ketogenic diet? What’s the difference between racemic mixtures, D-form, and L-form? What’s your experience with MCTs and C8?
And now, you can take ketone supplements (salts and esters), known as exogenous ketones, without actually restricting anything. According to those promoting this nasty-tasting supplement, that means you can have a brain and body fuelled by ketones, along with all of the supposed health benefits that come with running on fat. Well, don't fall for it.
Selective attention involves focusing only on relevant information while suppressing the impulse to pay attention to irrelevant distractions. A v-shaped flock of birds are displayed. The center (target) bird points in one direction and is surrounded by birds that either match the target’s direction or do not. The task is to rapidly identify which direction the target bird is pointing.
Although several studies have linked calcium supplementation with an increased risk of heart attack and heart disease[18], other studies have not found the same association. For example, a study on calcium supplementation (1000 mg/day) in postmenopausal women indicated a reduced risk of hip fracture, but no increase in cardiovascular disease or mortality in the supplement group, compared to the placebo group[19]. Another study found no effect from calcium supplementation (600 or 1200 mg/day) on abdominal aortic calcification[20].
Some general side effects of your body producing beta hydroxybutyrate is essentially the lull in time it takes to switch from carbohydrate metabolism to fat metabolism, which can take 3-4 days. This can lead to mood swings, fatigue, and general low energy. If you want to skip that step, we recommend taking exogenous BHBs to switch your body over effortlessly.
Administration of ketone supplementation significantly reduced blood glucose over the course of the study (Fig. 3a, b). MCT (5 g/kg) decreased blood glucose compared to control within 30 min which was sustained for 8 h at baseline and at week 1. MCT (10 g/kg) likewise decreased blood glucose within 30 min and lasted through the 12 h time point during weeks 2, 3, and 4. BMS + MCT (5 g/kg) lowered blood glucose compared to control from hours 1–8 only at week 1. BMS + MCT (10 g/kg) lowered blood glucose compared to control within 30 min and remained low through the 12 h time point at weeks 2, 3, and 4. Rats supplemented with BMS had lower blood glucose compared to control at 12 h in week 4 (10) (Fig. 3a). Administration of BD did not significantly change blood glucose levels at any time point during the 4-week study. KE (5 g/kg) significantly lowered blood glucose levels at 30 min for week 1, 2, 3, and 4 and was sustained through 1 h at weeks 2–4 and sustained to 4 h at week 3. (Fig. 3b).
How BHB turns into energy is a fairly simple process. As we’ve mentioned, beta hydroxybutryate eventually leads to energy production after you consume it or after your body breaks stored body fat down. It does this by going into the cell, entering the mitochondria (energy factories) at which stage it cleaves the carboxyl acid group and becomes acetoacetate (another “ketone body”). Acetoacetate turns into acetoacetyl-CoA, which then is cleaved to acetone (another “ketone body”) and acetyl-CoA. Acetyl-CoA is the whole reason we want BHB in the first place. This jumps into what is called the Kreb’s cycle (don’t you remember any of your biochemistry classes?) and is churned into ATP — the energy currency of your cells!
This fasting process will not only activate autophagy in your cells, it will also increase your ketones much more quickly than if you were just eating a standard ketogenic diet. If you start implementing intermittent fasting and activities (like walking, cycling, or lifting weights) together, you can raise ketone levels and increase autophagy more than you would with intermittent fasting alone. This suggests that intermittent fasting would be a great addition to your life, but it is important to be familiar with the negative symptoms that can arise before you start.
Blood, urine, plasma, and breath ketone concentrations following mole-matched ketone ester or isocaloric dextrose drinks in fed and fasted subjects (n = 16) at rest. Data from both of the two study visits in each condition (fed and fasted) completed by an individual are included in the analysis. Values are means ± SEM. (A) Blood d-βHB. (B) AUC of blood d-βHB. (C) Urine d-βHB excretion. (D) Plasma acetoacetate (AcAc). (E) Measured breath acetone (ppm = parts per million). (F,G) Mean d-βHB Cmax and difference between βHB Cmax over two visits when subjects separately consumed two ketone ester drinks in both the fed (F) and fasted (G) state. X axis = mean d-βHB Cmax of the 2 visits (mM), Y axis = difference between d-βHB Cmax in each visit. 95% confidence limits are shown as dotted lines. Significance denoted by: *p < 0.05 fed vs. fasted.
I’m getting an increasing number of questions about exogenous ketones. Are they good? Do they work for performance? Is there a dose-response curve? If I’m fasting, can I consume them without “breaking” the fast? Am I in ketosis if my liver isn’t producing ketones, but my BOHB is 1.5 mmol/L after ingesting ketones? Can they “ramp-up” ketogenesis? Are they a “smart drug?” What happens if someone has high levels of both glucose and ketones? Are some products better than others? Salts vs esters? BHB vs AcAc? Can taking exogenous ketones reduce endogenous production on a ketogenic diet? What’s the difference between racemic mixtures, D-form, and L-form? What’s your experience with MCTs and C8?

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×