Ketone supplementation did not affect the size of the brain, lungs, kidneys or heart of rats. As previously mentioned, the rats were still growing during the experimental time frame; therefore, organ weights were normalized to body weight to determine if organ weight changed independently to growth. There could be several reasons why ketones influenced liver and spleen weight. The ratio of liver to body weight was significantly higher in the MCT supplemented animals (Fig. 5). MCTs are readily absorbed in the intestinal lumen and transported directly to the liver via hepatic portal circulation. When given a large bolus, such as in this study, the amount of MCTs in the liver will likely exceed the β-oxidation rate, causing the MCTs to be deposited in the liver as fat droplets [94]. The accumulated MCT droplets in the liver could explain the higher liver weight to body weight percentage observed with MCT supplemented rats. Future toxicology and histological studies will be needed to determine the cause of the observed hepatomegaly. It should be emphasized that the dose in this study is not optimized in humans. We speculate that an optimized human dose would be lower and may not cause hepatomegaly or potential fat accumulation. Nutritional ketosis achieved with the KD has been shown to decrease inflammatory markers such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1 [8, 46], which may account for the observed decrease in spleen weight. As previously mentioned, Veech and colleagues demonstrated that exogenous supplementation of 5 mM βHB resulted in a 28 % increase in hydraulic work in the working perfused rat heart and a significant decrease in oxygen consumption [28, 41, 42]. Ketone bodies have been shown to increase cerebral blood flow and perfusion [95]. Also, ketone bodies have been shown to increase ATP synthesis and enhance the efficiency of ATP production [14, 28, 40]. It is possible that sustained ketosis results in enhanced cardiac efficiency and O2 consumption. Even though the size of the heart did not change for any of the ketone supplements, further analysis of tissues harvested from the ketone-supplemented rats will be needed to determine any morphological changes and to understand changes in organ size. It should be noted that the Harlan standard rodent chow 2018 is nutritionally complete and formulated with high-quality ingredients to optimize gestation, lactation, growth, and overall health of the animals. The same cannot be said for the standard American diet (SAD). Therefore, we plan to investigate the effects of ketone supplements administered with the SAD to determine if similar effects will be seen when the micronutrient deficiencies and macronutrient profile mimics what most Americans consume.
Although most of the research has been done utilizing ketone esters, ketone salt supplementation has the potential to provide additional benefits through the extra electrolytes/nutrients that are required to make the ketones. While ketone esters are expensive due to the manufacturing process involved in making them, ketone salts might be a more convenient option for both inducing a state of ketosis and elevating blood ketone levels for various reasons we will discuss in another article.
Those of you who have tried this form of weight loss before are probably more than aware of how hard it can be to first get your body to adapt to such a dramatic change in your daily intake of food, let alone without the help of a single exogenous ketone supplement. And the situation isn’t made any easier if you use a poor quality ketosis supplement because the wrong ketone product may actually do you more harm than good.
More tolerable than MCT oil: MCT oil has been known to cause gastrointestinal distress in users, especially when taken in higher amounts. Exogenous ketones in the form of ketone salts, in comparison, are well-tolerated. Thus they enable one to avoid adverse GI events while providing the body with similar types of benefits. Figure 2 shows Ketone esters can be effective at reducing appetite. A combination of MCT oil and exogenous ketones may aid weight loss and allow a lower loading of ketone supplements, without the GI distress seen with MCT oil.
North Americans typically live pro-inflammatory, pro-disease lives (think about your everyday: likely sitting in a flexed position for hours on end, not enough natural sunlight, not enough movement, artificial food stuffs, artificial colouring, going to bed late, blue light exposure, less in-person contact with our loved ones, late night snacks, the list goes on and on).
The body will start making ketones when either we go extended periods without food, or we restrict the one dietary component that stops ketone formation – this being carbohydrates and also minimising protein intake as this also can halt ketone. In turn, your primary source of food is fat, with very little carbohydrate and a small amount of protein.”
KE consumption decreased FFA from 0.6 to 0.2 mM, TG from 1.0 to 0.8 mM, and glucose from 5.5 to 4.7 mM by the end of the study (4 h). The effect was not altered by a meal (Figures 5A–C). Dextrose drinks also lowered FFA from 0.6 to 0.2 mM and TG from 1.0 to 0.7 mM (Figures 5A, B). This was likely mediated by the transient increase in glucose, which rose from 4.6 to 6.5 mM following the dextrose drink (Figure ​(Figure5C).5C). The anti-lypoytic effect of dextrose drinks was shorter than that of KE drinks as d-βHB concentrations were elevated for longer after KE drinks than glucose after dextrose drinks. Insulin increased to ~ 35−1 after both the meal and the dextrose drink, but also increased to 13 ± 2−1 when KE was consumed whilst fasted owing to the 15 g of glucose in the flavored drink used as a diluent (Figure ​(Figure5D5D).
Another source of the D-BOHB isomer is an evolutionarily ancient energy source for micro-organisms. Poly-BOHB is a long chain of D-BOHB molecules strung end-to-end. It functions in many single-cell organisms as a concentrated energy source similar to glycogen in mammals, but whereas glycogen breakdown releases individual glucose molecules, poly-BOHB hydrolysis releases single D-BOHB molecules.
I feel like I should also mention that the GI discomfort is real, people. I would recommend starting this product on a weekend or a day where you’re able to just take it easy. After my first dose, which was only 1/2 scoop, I literally just felt like lying in bed all day due to feelings of nauseousness; however, by the next day I was fine and even bumped my dose to a full scoop.
So if you really want to jump start ketosis, do what the prehistoric humans did; don’t eat for 3 to 5 days. Keep the water bottle and multivitamins close and go on a strict fast. It might seem extreme and to a degree it is, but starving yourself will put you into ketosis. No ifs, ands, or buts about it. And it will cause you to lapse into a ketogenic state faster than if you tried to do so by manipulating the foods you eat (replacing carbs with fats). Once starvation has caused your body to transition to a ketogenic state, you can begin to introduce your low carb, high fat keto-friendly foods.
If you do the same calculations as I did above for estimating fat oxidation, you’ll see that EE in this case was approximately 13.92 kcal/min, while fat oxidation was only 67% of this, or 9.28 kcal/min, or 1.03 g/min. So, for this second effort (the test set) my body did about 5% less mechanical work, while oxidizing about 25% less of my own fat. The majority of this difference, I assume, is from the utilization of the exogenous BHB, and not glucose (again, I will address below what I think is happening with glucose levels).
Weight loss benefits ushered the keto diet into the spotlight. That’s how most people have likely heard about ketones, a fuel source created naturally by the body when burning fat. But more and more research points to diverse applications of ketones in the blood outside of just fat loss, from improved endurance performance to the treatment of medical conditions like epilepsy.

The ketone esters are, hands-down, the worst tasting compounds I have ever put in my body. The world’s worst scotch tastes like spring water compared to these things. The first time I tried 50 mL of BHB monoester, I failed to mix it with anything (Dom warned me, but I was too eager to try them to actually read his instructions). Strategic error. It tasted as I imagine jet fuel would taste. I thought I was going to go blind. I didn’t stop gagging for 10 minutes. (I did this before an early morning bike ride, and I was gagging so loudly in the kitchen that I woke up my wife, who was still sleeping in our bedroom.) The taste of the AcAc di-ester is at least masked by the fact that Dom was able to put it into capsules. But they are still categorically horrible. The salts are definitely better, but despite experimenting with them for months, I was unable to consistently ingest them without experiencing GI side-effects; often I was fine, but enough times I was not, which left me concluding that I still needed to work out the kinks. From my discussions with others using the BHB salts, it seems I have a particularly sensitive GI system.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright ©