To determine the reason for the differences in blood d-βHB concentration, the KE and KS drinks were analyzed for enantiomeric purity. The KE contained >99% of the d-isoform, whereas ~50% of the KS βHB was the l-isoform (Figure ​(Figure1D).1D). Plasma samples from participants who consumed the high dose KS drink (n = 5) were analyzed to reveal higher l-βHB than d-βHB, the total βHB Cmax being 3.4 ± 0.2 mM (Figure ​(Figure1E),1E), with a total βHB AUC of 549 ± 19 mmol.min. After 4 h, plasma l-βHB remained elevated at 1.9 ± 0.2 mM; differences in urinary excretion of the two isoforms could not explain this observation as both d- and l-βHB were excreted in proportion to their blood AUCs (Figure ​(Figure1F).1F). Therefore, in order to determine the time required for l-βHB elimination, a follow-up experiment was undertaken in which subjects (n = 5) consumed 3.2 mmol.kg−1 of βHB as KE and KS with hourly blood and breath sample collection up to 4 h, plus additional samples at 8 h and 24 h post-drink. l-βHB was found to be 1.1 ± 0.1 mM at 4 h, and 0.7 ± 0.2 mM after 8 h, but undetectable after 24 h (Figure 1G). Low amounts of d-βHB (0.3 ± 0.1 mM) were present at 24 h, presumably due to endogenous production. Both ketone drinks significantly increased breath acetone concentration, but at a slower rate than blood d-βHB, reaching a peak after 3 h that was twice as high following the KE (87 ± 9 ppm) than the KS (44 ± 10 ppm), suggesting that d-βHB was readily converted to acetone, but l-βHB was not (p < 0.005, Figure ​Figure1H1H).
Elliot received his BS in Biochemistry from the University of Minnesota and has been a freelance writer specializing in nutritional and health sciences for the past 5 years. He is thoroughly passionate about exercise, nutrition, and dietary supplementation, especially how they play a role in human health, longevity, and performance. In his free time you can most likely find him lifting weights at the gym or out hiking through the mountains of Colorado. He will also host the upcoming BioKeto podcast. You can connect with him on Facebook (https://www.facebook.com/elliot.reimers) and Instagram (@eazy_ell)

Blood, breath, and urine ketone kinetics following mole-matched ketone ester (KE) and ketone salt (KS) drinks, at two amounts, in 15 subjects at rest. Values are means ± SEM. (A) Blood d-βHB. (B) Tmax of blood d-βHB. (C) AUC of blood d-βHB. (D) Isotopic abundance (%) of d- and l-chiral centers in pure liquid KE and KS. (E) Blood d-βHB and l-βHB concentrations in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (F) d-βHB and l-βHB concentrations in urine samples from subjects (n = 10) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (G) Blood d- and l-βHB after 4, 8, and 24 h in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KS drinks. (H) Breath acetone over 24 h in subjects (n = 5) consuming 3.2 mmol.kg−1 of βHB in KE and KS drinks (ppm = parts per million). (I) Urine d-βHB excreted over 4 h after KE and KS drinks (n = 15). (J) Urine pH 4 h after drink, dotted line indicates baseline. †p < 0.05 KE vs. equivalent amount of KS, *p < 0.05 difference between 1.6 vs. 3.2 mmol.kg−1 of βHB, §p < 0.05 difference between amounts of d- and l-βHB, p < 0.05 difference between baseline and post-drink level.


To determine the reason for the differences in blood d-βHB concentration, the KE and KS drinks were analyzed for enantiomeric purity. The KE contained >99% of the d-isoform, whereas ~50% of the KS βHB was the l-isoform (Figure ​(Figure1D).1D). Plasma samples from participants who consumed the high dose KS drink (n = 5) were analyzed to reveal higher l-βHB than d-βHB, the total βHB Cmax being 3.4 ± 0.2 mM (Figure ​(Figure1E),1E), with a total βHB AUC of 549 ± 19 mmol.min. After 4 h, plasma l-βHB remained elevated at 1.9 ± 0.2 mM; differences in urinary excretion of the two isoforms could not explain this observation as both d- and l-βHB were excreted in proportion to their blood AUCs (Figure ​(Figure1F).1F). Therefore, in order to determine the time required for l-βHB elimination, a follow-up experiment was undertaken in which subjects (n = 5) consumed 3.2 mmol.kg−1 of βHB as KE and KS with hourly blood and breath sample collection up to 4 h, plus additional samples at 8 h and 24 h post-drink. l-βHB was found to be 1.1 ± 0.1 mM at 4 h, and 0.7 ± 0.2 mM after 8 h, but undetectable after 24 h (Figure 1G). Low amounts of d-βHB (0.3 ± 0.1 mM) were present at 24 h, presumably due to endogenous production. Both ketone drinks significantly increased breath acetone concentration, but at a slower rate than blood d-βHB, reaching a peak after 3 h that was twice as high following the KE (87 ± 9 ppm) than the KS (44 ± 10 ppm), suggesting that d-βHB was readily converted to acetone, but l-βHB was not (p < 0.005, Figure ​Figure1H1H).

Anti-carcinogenic properties: Data seems to suggest that exogenous ketones are an effective anti-carcinogen. The reason behind this is that cancer cells are unable to use ketone bodies effectively, unlike most healthy tissues in the body. In fact, dietary ketone supplementation has been shown to increase survival rates of mice with systematic cancer by as much as 70%.17


 Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. – Glucose is the brain’s principal energy substrate. In Alzheimer’s disease (AD), there appears to be a pathological decrease in the brain’s ability to use glucose. Neurobiological evidence suggests that ketone bodies are an effective alternative energy substrate for the brain. Elevation of plasma ketone body levels through an oral dose of medium chain triglycerides (MCTs) may improve cognitive functioning in older adults with memory disorders. On separate days, 20 subjects with AD or mild cognitive impairment consumed a drink containing emulsified MCTs or placebo. Significant increases in levels of the ketone body beta-hydroxybutyrate (beta-OHB) were observed 90 min after treatment (P=0.007) when cognitive tests were administered. beta-OHB elevations were moderated by apolipoprotein E (APOE) genotype (P=0.036). For 4+ subjects, beta-OHB levels continued to rise between the 90 and 120 min blood draws in the treatment condition, while the beta-OHB levels of 4- subjects held constant (P<0.009). On cognitive testing, MCT treatment facilitated performance on the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) for 4- subjects, but not for 4+ subjects (P=0.04). Higher ketone values were associated with greater improvement in paragraph recall with MCT treatment relative to placebo across all subjects (P=0.02). Additional research is warranted to determine the therapeutic benefits of MCTs for patients with AD and how APOE-4 status may mediate beta-OHB efficacy.
The way you make an exogenous BHB is by attaching it to some type of other compound (sodium, potassium, calcium, or magnesium) so that your body can process the molecule by cleaving the bond between the salt and the beta hydroxybutyrate. BHB + bound to a salt = BHB salts, which is what most people in the ketosis community call exogenous ketones. There are also things called esters, which are basically unbound BHB molecules. These are really disgusting and cause massive digestive issues, so I like to ignore them until we can produce them in a more appealing way.

There are many different variations of intermittent fasting as well. Dr. Dom D’Agostino, the well-known ketogenic diet researcher, suggests doing a longer intermittent fast for 3 days, 3 times a year. This means not eating for 3 days, and eating normally until the next fast. Daily intermittent fasts are recommended as well. He says that it is ideal to have one to two meals after fasting for most of the day to reap the benefits of intermittent fasting every day.
The difference in peak blood d-βHB concentrations between matched amounts of βHB as ester or salts arose because the salt contained l-βHB, as the blood concentrations of d- plus l-βHB isoforms were similar for both compounds. It is unclear if kinetic parameters of KE and KS drinks would be similar if matched d-βHB were taken in the drinks. Unlike d-βHB, blood l-βHB remained elevated for at least 8 h following the drink, suggesting an overall lower rate of metabolism of l-βHB as urinary elimination of l-βHB was in proportion to plasma concentration. Despite similar concentrations of total βHB, breath acetone was ~50% lower following KS drinks compared to KE, suggesting fundamental differences in the metabolic fates of D- and L-βHB. These findings support both previous hypotheses (Veech and King, 2016) and experimental work in rats (Webber and Edmond, 1977), which suggested that the l-isoform was less readily oxidized than the d-isoform, and is processed via different pathways, perhaps in different cellular compartments. It seems that l-βHB is not a major oxidative fuel at rest, and may accumulate with repeated KS drinks. However, the putative signaling role of l-βHB in humans remains unclear. In rodent cardiomyocytes, l-βHB acts as a signal that modulates the metabolism of d-βHB and glucose, Tsai et al. (2006) although no differences in blood glucose were seen here. Furthermore, L-βHB can act as a cellular antioxidant, although to a lesser extent than D-βHB (Haces et al., 2008).
Exogenous ketones have become a popular nutritional supplement since their introduction in 2014. Unfortunately there is a lot of inaccurate information and marketing you have to read through to find the truth about them. This article does the hard work for you. It gets right to the true benefits and drawbacks of exogenous ketones supported by research studies.
Many of us avoid foods like processed meats and cheeses or salted nuts because of their high sodium content. However, processed carbohydrate sources can have equal or higher amounts of sodium per serving. An ounce of salted pretzels[3] has over four times as much sodium as an ounce of salted peanuts[4]. Just because we can’t taste the sodium doesn’t mean it isn’t in there. Flavors from other ingredients like sugar and spices can make it difficult to identify salt as a dominant flavor.
Exogenous ketones have become a popular nutritional supplement since their introduction in 2014. Unfortunately there is a lot of inaccurate information and marketing you have to read through to find the truth about them. This article does the hard work for you. It gets right to the true benefits and drawbacks of exogenous ketones supported by research studies.
I interviewed Dr. Brianna Stubbs, a ketone researcher with a Ph.D. in Metabolic Physiology from the University of Oxford who is now Research Lead at HVMN, specializing in developing ketone esters. She told me that in terms of science on the ketone salts and their effect on physical performance, one of the most-cited benefits of ketone salts, the scientific studies that have been done show at best no effect on physical performance and that, currently, there is no peer-reviewed scientific research on the ketone salt products on the market.
Currently, we lack enough evidence to change the recommendations for calcium intake. The Tolerable Upper Intake Level (UL) for adults 19-50 years old is 2500 mg. This is well over the RDA of 1000 mg for the same age group. Calcium supplements commonly contain 600-1200 mg. When assessing your own calcium intake, keep in mind that calcium from food sources and calcium from supplements may have different outcomes.

The ‘carb-sparing’ effect from BHB suppresses the break down of muscle glycogen. This leads to lower lactate levels. When increasing exercise intensity, fat oxidation (burning) reaches a limit. At that point the muscle burns carbohydrates as fuel. But when consuming Ketone esters, the body does not make this switch. This suggests Ketones are being used instead. 11


Hi all…thanks for your articles and info. I am currently on a paleo diet, but want to lose more weight and bring it up a notch w/ ketogenic diet and be in ketosis. Not sure which product is best? Do you take the MCT oil and also a ketone powder. I know it may be difficult at first, but I am up for the challenge as we start the new year and would like to loose 40 lbs by May/June. Please advise as to what products are best so I can purchase. THANKS
Hi- Thank you for this super helpful post. I’m new to Keto and supplementing Keytones. I just got the Julian Bakery Keytones and am curious about how to take them as there are no instructions on the packaging. Indeed the website has a diet plan to follow with the keytones but I am very suspicious of it because it is 0 fat which I believe is not healthy for brain or body and given that I have soft tissue and joint issues, I try to eat enough fat daily. I want to lose weight and I crossfit 5 days per week. So how do I best start with using the keytone supplements? I took a scoop full yesterday when they arrived (in the early afternoon) but hadn’t yet eaten and I think that was a mistake because I had immediate diarrhea which lasted a few hours, even after eating.
Testing BHB levels in the blood is simple but can get pricey if you are doing it many times a day.  The Precision Xtra blood glucose and ketone meter is a good buy at $28-$30.   The expensive part is the ketone test strips here which can cost $4 each.   If you are looking at testing yourself every day it is going to cost you $120 a month and the $30 meter.  Here is a starter kit you can get on Amazon.

The table below shows the same measurements and calculations as the above table, but under the test conditions. You’ll note that BHB is higher at the start and falls more rapidly, as does glucose (for reasons I’ll explain below). HR data are almost identical to the control test, but VO2 and VCO2 are both lower. RQ, however, is slightly higher, implying that the reduction in oxygen consumption was greater than the reduction in carbon dioxide production.

Affiliate Disclosure: There are links on this site that can be defined as affiliate links. This means that I may receive a small commission (at no cost to you) if you purchase something when clicking on the links that take you through to a different website. By clicking on the links, you are in no way obligated to buy.

Medical Disclaimer: The material on this site is provided for informational purposes only and is not medical advice. Always consult your physician before beginning any diet or exercise program.

Copyright © lowcarbtransformation.com

×